966 research outputs found
Plasma and magnetospheric research
Research developments in the following areas are discussed: (1) an ion trajectory computer code which plots the paths of ions ejected from the polar cusp ionosphere; (2) the response of plasmaspheric ion temperatures to geomagnetic activity; (3) spacecraft sheath effects; (4) plasma flow; (5) neutral gas temperatures; and (6) instrument fabrication, modification, and maintenance
Magnetospheric research
Research concerning the magnetosphere is discussed in terms of satellite data analysis, instrument studies and developments, solar terrestrial studies, meetings, and consultants
Plasma and magnetospheric research
Several programs and variations have been developed to determine statistical means of different plasma parameters when binned in different variables. These parameters include temperature, densities and spacecraft potentials for any of the ion species, as well as ratios of these variables for any other ion species to the corresponding variable for H(+). The variables for binning include L, radial distance, and geomagnetic latitude; and separate statistics are automatically run for local morning and local evening data. These programs all run from output files from the plasma parameter thin sheath analysis program. A variant program also bins for magnetic activity, using either Kp or Dst, which requires an additional magnetic activity input file. These programs can be run either interactively or in batch mode, using file listings generated by a DIRECTORY command. In addition to printed output, these programs generate output files which can be used to plot the results. Programs to plot these averaged data are under development
Space plasma research
Temperature and density analysis in the Automated Analysis Program (for the global empirical model) were modified to use flow velocities produced by the flow velocity analysis. Revisions were started to construct an interactive version of the technique for temperature and density analysis used in the automated analysis program. A sutdy of ion and electron heating at high altitudes in the outer plasmasphere was initiated. Also the analysis of the electron gun experiments on SCATHA were extended to include eclipse operations in order to test a hypothesis that there are interactions between the 50 to 100 eV beam and spacecraft generated photoelectrons. The MASSCOMP software to be used in taking and displaying data in the two-ion plasma experiment was tested and is now working satisfactorily. Papers published during the report period are listed
Investigation of low energy space plasma
A statistical study of 1982 data for occurrences of equatorially trapped plasma has been extended. The previous survey, which utilized only the MSFC summary fiche, has been supplemented with the GSFC summary fiche, which has had the effect of substantially improving the late 1982 coverage. It was found that in the post midnight region (1 - 3 LT), the trapped plasma is limited to + or - 5 degrees magnetic latitude, while in the early afternoon (13-15 LT), latitude ranges as high as + or 30 degrees are found. This survey has provided a link to earlier ATS-6 and ISEE studies of pancake distributions. Although the most energetic, and most anisotopic plasmas are trapped within a few degrees of the equator, the results of these equatorial interactions extend substantially along the magnetic field line in the afternoon and dusk region and these high latitude extensions were previously studied by the Huntsville group. Results of this study were incorporated into a revision of the equatorial ion paper, which has been resubmitted and accepted for publication
Auroral thermosphere temperatures from observations of 6300 A emissions
Doppler temperatures determined from observations of the atomic oxygen OI 6300 A line during March 1984 at the University of Alaska/Fairbanks are presented. Temperatures are obtained from Fabry-Perot Interferometer pressure scans using a Fourier transform smoothing and fitting technique; this technique is presented in detail. The temperatures and the spread in the temperatures are consistent from day to day. On the clear nights of March 10 to 13, the temperatures were 800, 750, 750 and 800 K, respectively, with a spread of + or - 100 K. These temperatures are compared to the MSIS (84) model atmosphere for similar geomagnetic conditions and found to be in general agreement; they are also consistent with results obtained by other investigators
- …