1,864 research outputs found
Plant essential oils synergize various pyrethroid insecticides and antagonize malathion in Aedes aegypti
Pyrethroid resistance is a significant threat to agricultural, urban and public health pest control activities. Because economic incentives for the production of novel active ingredients for the control of public health pests are lacking, this field is particularly affected by the potential failure of pyrethroid‐based insecticides brought about by increasing pyrethroid resistance. As a result, innovative approaches are desperately needed to overcome insecticide resistance, particularly in mosquitoes that transmit deadly and debilitating pathogens. Numerous studies have demonstrated the potential of plant essential oils to enhance the efficacy of pyrethroids. The toxicity of pyrethroids combined with plant oils is significantly greater than the baseline toxicity of either oils or pyrethroids applied alone, which suggests there are synergistic interactions between components of these mixtures. The present study examined the potential of eight plant essential oils applied in one of two concentrations (1% and 5%) to enhance the toxicity of various pyrethroids (permethrin, natural pyrethrins, deltamethrin and β‐cyfluthrin). The various plant essential oils enhanced the pyrethroids to differing degrees. The levels of enhancement provided by combinations of plant essential oils and pyrethroids in comparison with pyrethroids alone were calculated and synergistic outcomes characterized. Numerous plant essential oils significantly synergized a variety of pyrethroids; type I pyrethroids were synergized to a greater degree than type II pyrethroids. Eight plant essential oils significantly enhanced 24‐h mortality rates provided by permethrin and six plant essential oils enhanced 24‐h mortality rates obtained with natural pyrethrins. By contrast, only three plant essential plants significantly enhanced the toxicity of deltamethrin and β‐cyfluthrin. Of the plant essential oils that enhanced the toxicity of these pyrethroids, some produced varying levels of synergism and antagonism. Geranium, patchouli and Texas cedarwood oils produced the highest levels of synergism, displaying co‐toxicity factors of \u3e 100 in some combinations. To assess the levels of enhancement and synergism of other classes of insecticide, malathion was also applied in combination with the plant oils. Significant antagonism was provided by a majority of the plant essential oils applied in combination with this insecticide, which suggests that plant essential oils may act to inhibit the oxidative activation processes within exposed adult mosquitoes
Periodicity of high-order functions in the CNS Final progress report, year ending 30 Jun. 1971
Analysis of cerebral slow potentials underlying human attentive processes in central nervous syste
Mechanisms of toxic action and structure-activity relationships for organochlorine and synthetic pyrethroid insecticides.
The mechanisms and sites of action of organochlorine (DDT-types and chlorinated alicyclics) and synthetic pyrethroid insecticides are presented with discussion of symptoms, physiological effects, and selectivity. The structural requirements for toxicity are assessed, and structure-activity relationships are considered for each subclass. Lipophilicity is important for all the groups because it facilitates delivery of these neurotoxicants to the site of action in the nerve. Steric factors including molecular volume, shape, and isomeric configuration greatly influence toxicity. Electronic parameters also have been demonstrated to affect biological activity in some of the groups of insecticides, e.g., Hammett's sigma and Taft's sigma * as indicators of electronegativity. New synthetic pyrethroids continue to be developed, with varied structures and different physicochemical and biological properties
Non-chemical on-farm hermetic maize storage in east Africa
Hermetic post-harvest maize storage can effectively control maize weevil, Sitophilus zeamais, which can be responsible for up to 50% damage to stored maize grain. Its use eliminates the need for toxic and expensive chemicals. Laboratory experiments were conducted on hermetic storage systems to evaluate the effects of temperature (10o vs. 27°C) and maize moistures (6.3 to 16%) on maize weevil biology and mortality rate, and to quantify weevil oxygen consumption. Ten-day weevil mortality was higher in hermetic vs. nonhermetic storage, in 6.3% moisture maize vs. 16%, and at a 27°C storage temperature vs. 10°C. Oxygen depletion results allow estimation of daily weevil oxygen consumption as a function of storage temperature and maize moisture for East Africa conditions. Keywords: Maize storage, Hermetic storage, Sitophilus zeamais, Maize weevil control, Maize deterioratio
Periodicity of high-order neural functions
The results of recent studies on higher order, integrative processes in the central nervous system are reported. Attempts were made to determine whether these processes exhibit any ongoing rhythmicity which might manifest itself in alterations of attention and alertness. Experiments were also designed to determine if a periodicity approximating that of the REM could be detected in various parameters of brain electrical activity
- …