519 research outputs found

    Determining density of maize canopy. 2: Airborne multispectral scanner data

    Get PDF
    Multispectral scanner data were collected in two flights over a light colored soil background cover plot at an altitude of 305 m. Energy in eleven reflective wavelength band from 0.45 to 2.6 microns was recorded. Four growth stages of maize (Zea mays L.) gave a wide range of canopy densities for each flight date. Leaf area index measurements were taken from the twelve subplots and were used as a measure of canopy density. Ratio techniques were used to relate uncalibrated scanner response to leaf area index. The ratios of scanner data values for the 0.72 to 0.92 micron wavelength band over the 0.61 to 0.70 micron wavelength band were calculated for each plot. The ratios related very well to leaf area index for a given flight date. The results indicated that spectral data from maize canopies could be of value in determining canopy density

    Comparing soil boundaries delineated by digital analysis of multispectral scanner data from high and low spatial resolution systems

    Get PDF
    The author has identified the following significant results. Computer-aided analysis techniques used with aircraft MSS data showed that the spatial resolution was sufficient to recognize each soil mapping unit of the test site. Some difficulties occurred where different soil series were intricately mixed, and this mixture showed as a separate spectral mapping unit, or where the difference between two soils depended on the depth of silty surface material. Analysis of LANDSAT data with computer-aided techniques showed that it was not possible to find spectrally homogeneous soil features of the seven soil series on the 40 ha test site on the digital display or on a picture print map. Cluster techniques could be used on an extended test area to group spectrally similar data points into cluster classes

    Evaluation of surface water resources from machine-processing of ERTS multispectral data

    Get PDF
    The surface water resources of a large metropolitan area, Marion County (Indianapolis), Indiana, are studied in order to assess the potential value of ERTS spectral analysis to water resources problems. The results of the research indicate that all surface water bodies over 0.5 ha were identified accurately from ERTS multispectral analysis. Five distinct classes of water were identified and correlated with parameters which included: degree of water siltiness; depth of water; presence of macro and micro biotic forms in the water; and presence of various chemical concentrations in the water. The machine processing of ERTS spectral data used alone or in conjunction with conventional sources of hydrological information can lead to the monitoring of area of surface water bodies; estimated volume of selected surface water bodies; differences in degree of silt and clay suspended in water and degree of water eutrophication related to chemical concentrations

    Spectral characteristics of normal and nutrient-deficient maize leaves

    Get PDF
    Reflectance, transmittance and absorbance spectra of normal and six types of mineral-deficient (N,P,K,S,Mg and Ca) maize (Zea mays L.) leaves were analyzed at 30 selected wavelengths along the electromagnetic spectrum from 500 to 2600 nm. Chlorophyll content and percent leaf moisture were also determined. Leaf thermograms were obtained for normal, N- and S- deficient leaves. The results of the analysis of variance showed significant differences in reflectance, transmittance and absorbance in the visible wavelengths among leaf numbers 3, 4, and 5, among the seven nutrient treatments, and among the interactions of leaves and treatments. In the reflective infrared wavelengths only treatments produced significant differences. The chlorophyll content of leaves was reduced in all deficiencies in comparison to controls. Percent moisture was increased in S-, Mg- and N- deficiencies. Positive correlation (r = 0.707) between moisture content and percent absorption at both 1450 and 1930 nm were obtained. Polynomial regression analysis of leaf thickness and leaf moisture content showed that these two variables were significantly and directly related (r = 0.894)

    Perturbation Analysis of the Kuramoto Phase Diffusion Equation Subject to Quenched Frequency Disorder

    Full text link
    The Kuramoto phase diffusion equation is a nonlinear partial differential equation which describes the spatio-temporal evolution of a phase variable in an oscillatory reaction diffusion system. Synchronization manifests itself in a stationary phase gradient where all phases throughout a system evolve with the same velocity, the synchronization frequency. The formation of concentric waves can be explained by local impurities of higher frequency which can entrain their surroundings. Concentric waves in synchronization also occur in heterogeneous systems, where the local frequencies are distributed randomly. We present a perturbation analysis of the synchronization frequency where the perturbation is given by the heterogeneity of natural frequencies in the system. The nonlinearity in form of dispersion, leads to an overall acceleration of the oscillation for which the expected value can be calculated from the second order perturbation terms. We apply the theory to simple topologies, like a line or the sphere, and deduce the dependence of the synchronization frequency on the size and the dimension of the oscillatory medium. We show that our theory can be extended to include rotating waves in a medium with periodic boundary conditions. By changing a system parameter the synchronized state may become quasi degenerate. We demonstrate how perturbation theory fails at such a critical point.Comment: 22 pages, 5 figure

    Application of Multispectral Reflectance Studies of Soils: Pre-Landsat

    Get PDF
    It was recognized in the 1960\u27s that measuring the spectral, spatial and temporal variation of electromagnetic fields reflected and emitted from the Earth\u27s surface had many potential applications in the field of agriculture. As a result, computer-implemented pattern recognition techniques were used to analyze multispectral data for the purpose of delineating soil differences. Spectral data were obtained (1) in the laboratory by scanning soil samples with a double-beam spectrophotometer (Beckman DK-2A) and (2) in the field by scanning large areas of soils with an airborne multispectral scanner. The results obtained through this early research clearly illustrated relationships between the reflected and emitted energy from soils and other physical and chemical properties of those soils. The possibility of sampling large geographic areas and obtaining information about various soil parameters within a relatively short time period appeared to be of great value to potential users, i.e. soil surveyors, soil conservationists and other resource management personnel

    Comparing Soil Boundaries Delineated by Digital Analysis of Multispectral Scanner Data from High and Low Spatial Resolution Systems

    Get PDF
    Aircraft and Landsat data were used with computer-aided techniques to delineate soils patterns of a field of 40 ha in a transition zone between soils developed under deciduous forest and those developed under prairie vegetation. Two computer-aided classification techniques, supervised and nonsupervised, were employed in classifying soils of the study area. The means and covariance matrix statistics were obtained for every cluster or soil class through the statistics algorithm. Each cluster of aircraft and Landsat data was identified and assigned to a specific soil type by correlating the cluster soil patterns with a standard soils map of the test site which was prepared as a part of the ground observation task. A sampling grid plan was used to select a training set for a supervised classification of the aircraft MSS data. The spectral soil patterns revealed in the classifications from aircraft and satellite MSS data resembled the general patterns of the soils of the conventionally prepared soil map. The spatial resolution of the aircraft scanner was adequate to recognize each soil type boundary in the test site. However, the limited spatial resolution of the satellite scanner made it difficult to delineate those soil features with widths less than the spatial resolution of the scanner. On the contrary those soil patterns which were broad enough to exceed the spatial resolution of the Landsat scanner were delineated very well

    Spectra of Normal and Nutrient-Deficient Maize Leaves

    Get PDF
    Reflectance, transmittance and absorptance spectral of normal and six types of nutrient-deficient (N, P, K, S, Mg, and Ca) maize (Zea mays L.) leaves were analyzed at 30 selected wavelengths from 500-2600 nm. The analysis of variance showed significant differences in reflectance, transmittance and absorptance in the visible wavelengths among leaf numbers 3, 4, and 5, among the seven treatments, and among the interactions of leaf number and treatments. In the infrared wavelengths only treatments produced significant differences. The chlorophyll content of leaves was reduced in all nutrient deficient treatments. Percent moisture was increased in S-, Mg-, and N-deficiencies. Positive correlations were obtained (r = 0.7) between moisture content and percent absorption at both 1450 and 1930 nm. Polynomial regression analysis of leaf thickness and leaf moisture content showed that these two variables were significantly and directly related (R = 0.894). Leaves from the P- and Ca-deficient plants absorbed less energy in the near infrared than the normal plants; S-, Mg-, K-, and N-deficient leaves absorbed more than the normal. Leaf thermograms were prepared on normal and S- and N-deficient leaves. Both S- and N-deficient leaves had higher temperatures than normal maize leaves

    Cloud Ice Properties: In Situ Measurement Challenges

    Get PDF
    Baumgardner D., S.J. Abel, D. Axisa, R. Cotton, J. Crosier, P. Field, C. Gurganus, A. Heymsfield, A. Korolev, M. Krämer, P. Lawson, G. McFarquhar, Z. Ulanowski, and J. Um, 'Cloud ice properties: in situ measurement challenges', Meteorological Monographs, Vol. 58, pp. 9.1–9.23, April 2017. The version of record is available online at doi: 10.1175/AMSMONOGRAPHS-D-16-0011.1.1 © 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).Understanding the formation and evolution of ice in clouds requires detailed information on the size, shape, mass and optical properties of individual cloud hydrometeors and their bulk properties over a broad range of atmospheric conditions. Since the 1960s, instrumentation and research aircraft have evolved providing increasingly more accurate and larger quantities of data about cloud particle properties. In this chapter we review the current status of electrical powered, in situ measurement systems with respect to their strengths and weaknesses and document their limitations and uncertainties. There remain many outstanding challenges. These are summarized and accompanied by recommendations for moving forward. through new developments that fill the remaining information gaps. Closing these gaps will remove the obstacles that continue to hinder our understanding of cloud processes in general and the evolution of ice in particular.Peer reviewe

    Exact and near backscattering measurements of the linear depolarisation ratio of various ice crystal habits generated in a laboratory cloud chamber

    Get PDF
    © 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).Ice clouds were generated in the Manchester Ice Cloud Chamber (MICC), and the backscattering linear depolarisation ratio, δ, was measured for a variety of habits. To create an assortment of particle morphologies, the humidity in the chamber was varied throughout each experiment, resulting in a range of habits from the pristine to the complex. This technique was repeated at three temperatures: −7 °C, −15 °C and −30 °C, in order to produce both solid and hollow columns, plates, sectored plates and dendrites. A linearly polarised 532 nm continuous wave diode laser was directed through a section of the cloud using a non-polarising 50:50 beam splitter. Measurements of the scattered light were taken at 178°, 179° and 180°, using a Glan–Taylor prism to separate the co- and cross-polarised components. The intensities of these components were measured using two amplified photodetectors and the ratio of the cross- to co-polarised intensities was measured to find the linear depolarisation ratio. In general, it was found that Ray Tracing over-predicts the linear depolarisation ratio. However, by creating more accurate particle models which better represent the internal structure of ice particles, discrepancies between measured and modelled results (based on Ray Tracing) were reduced.Peer reviewe
    • …
    corecore