66,719 research outputs found
Phase diagram of two-species Bose-Einstein condensates in an optical lattice
The exact macroscopic wave functions of two-species Bose-Einstein condensates
in an optical lattice beyond the tight-binding approximation are studied by
solving the coupled nonlinear Schrodinger equations. The phase diagram for
superfluid and insulator phases of the condensates is determined analytically
according to the macroscopic wave functions of the condensates, which are seen
to be traveling matter waves.Comment: 13 pages, 2 figure
Controllable Persistent Atom Current of Bose-Einstein Condensates in an Optical Lattice Ring
In this paper the macroscopic quantum states of Bose-Einstein condensates in
optical lattices is studied by solving the periodic Gross-Pitaevskii equation
in one-dimensional geometry. It is shown that an exact solution seen to be a
travelling wave of excited macroscopic quantum states resultes in a persistent
atom current which can be controlled by adjusting of the barrier height of the
optical periodic potential. A critical condition to generate the travelling
wave is demonstrated and we moreover propose a practical experiment to realize
the persistent atom current in a toroidal atom waveguide.Comment: 9 pages, 1 figure
Superluminal Caustics of Close, Rapidly-Rotating Binary Microlenses
The two outer triangular caustics (regions of infinite magnification) of a
close binary microlens move much faster than the components of the binary
themselves, and can even exceed the speed of light. When , where
is the caustic speed, the usual formalism for calculating the lens
magnification breaks down. We develop a new formalism that makes use of the
gravitational analog of the Li\'enard-Wiechert potential. We find that as the
binary speeds up, the caustics undergo several related changes: First, their
position in space drifts. Second, they rotate about their own axes so that they
no longer have a cusp facing the binary center of mass. Third, they grow larger
and dramatically so for . Fourth, they grow weaker roughly in
proportion to their increasing size. Superluminal caustic-crossing events are
probably not uncommon, but they are difficult to observe.Comment: 12 pages, 7 ps figures, submitted to Ap
Origin of Mass. Mass and Mass-Energy Equation from Classical-Mechanics Solution
We establish the classical wave equation for a particle formed of a massless
oscillatory elementary charge generally also traveling, and the resulting
electromagnetic waves, of a generally Doppler-effected angular frequency \w,
in the vacuum in three dimensions. We obtain from the solutions the total
energy of the particle wave to be \eng=\hbarc\w, 2\pi \hbarc being a
function expressed in wave-medium parameters and identifiable as the Planck
constant. In respect to the train of the waves as a whole traveling at the
finite velocity of light , \eng=mc^2 represents thereby the translational
kinetic energy of the wavetrain, m=\hbarc\w/c^2 being its inertial mass and
thereby the inertial mass of the particle. Based on the solutions we also write
down a set of semi-empirical equations for the particle's de Broglie wave
parameters. From the standpoint of overall modern experimental indications we
comment on the origin of mass implied by the solution.Comment: 13 pages, no figure. Augmented introductio
Carbon Nanotubes in Helically Modulated Potentials
We calculate effects of an applied helically symmetric potential on the low
energy electronic spectrum of a carbon nanotube in the continuum approximation.
The spectrum depends on the strength of this potential and on a dimensionless
geometrical parameter, P, which is the ratio of the circumference of the
nanotube to the pitch of the helix. We find that the minimum band gap of a
semiconducting nanotube is reduced by an arbitrarily weak helical potential,
and for a given field strength there is an optimal P which produces the biggest
change in the band gap. For metallic nanotubes the Fermi velocity is reduced by
this potential and for strong fields two small gaps appear at the Fermi surface
in addition to the gapless Dirac point. A simple model is developed to estimate
the magnitude of the field strength and its effect on DNA-CNT complexes in an
aqueous solution. We find that under typical experimental conditions the
predicted effects of a helical potential are likely to be small and we discuss
several methods for increasing the size of these effects.Comment: 12 pages, 10 figures. Accepted for publication in Physical Review B.
Image quality reduced to comply with arxiv size limitation
- …