322 research outputs found
Alternative activation of macrophages by filarial nematodes is MyD88-independent
AbstractAlternative macrophage activation is largely defined by IL-4Rα stimulation but the contribution of Toll-like receptor (TLR) signaling to this phenotype is not currently known. We have investigated macrophage activation status under Th2 conditions in the absence of the core TLR adaptor molecule, MyD88. No impairment was observed in the ability of MyD88-deficient bone marrow derived macrophages to produce or express alternative activation markers, including arginase, RELM-α or Ym1, in response to IL-4 treatment in vitro. Further, we observed no difference in the ability of peritoneal exudate cells from nematode implanted wild type (WT) or MyD88-deficient mice to produce arginase or express the alternative activation markers RELM-α or Ym1. Therefore, MyD88 is not a fundamental requirement for Th2-driven macrophage alternative activation, either in vitro or in vivo
A G-quadruplex-binding compound showing anti-tumour activity in an in vivo model for pancreatic cancer
We report here that a tetra-substituted naphthalene-diimide derivative (MM41) has significant in vivo anti-tumour activity against the MIA PaCa-2 pancreatic cancer xenograft model. IV administration with a twice-weekly 15 mg/kg dose produces ca 80% tumour growth decrease in a group of tumour-bearing animals. Two animals survived tumour-free after 279 days. High levels of MM41 are rapidly transported into cell nuclei and were found to accumulate in the tumour. MM41 is a quadruplex-interactive compound which binds strongly to the quadruplexes encoded in the promoter sequences of the BCL-2 and k-RAS genes, both of which are dis-regulated in many human pancreatic cancers. Levels of BCL-2 were reduced by ca 40% in tumours from MM41-treated animals relative to controls, consistent with BCL-2 being a target for MM41. Molecular modelling suggests that MM41 binds to a BCL-2 quadruplex in a manner resembling that previously observed in co-crystal structures with human telomeric quadruplexes. This supports the concept that MM41 (and by implication other quadruplex-targeting small molecules) can bind to quadruplex-forming promoter regions in a number of genes and down-regulate their transcription. We suggest that quadruplexes within those master genes that are up-regulated drivers for particular cancers, may be selective targets for compounds such as MM41
MHCII-mediated dialog between group 2 innate lymphoid cells and CD4+ T cells potentiates type 2 immunity and promotes parasitic helminth expulsion
Group 2 innate lymphoid cells (ILC2s) release interleukin-13 (IL-13) during protective immunity to helminth infection and detrimentally during allergy and asthma. Using two mouse models to deplete ILC2s in vivo, we demonstrate that T helper 2 (Th2) cell responses are impaired in the absence of ILC2s. We show that MHCII-expressing ILC2s interact with antigen-specific T cells to instigate a dialog in which IL-2 production from T cells promotes ILC2 proliferation and IL-13 production. Deletion of MHCII renders IL-13-expressing ILC2s incapable of efficiently inducing Nippostrongylus brasiliensis expulsion. Thus, during transition to adaptive T cell-mediated immunity, the ILC2 and T cell crosstalk contributes to their mutual maintenance, expansion and cytokine production. This interaction appears to augment dendritic-cell-induced T cell activation and identifies a previously unappreciated pathway in the regulation of type-2 immunity
Synthesis, G-Quadruplex Stabilisation, Docking Studies, and Effect on Cancer Cells of Indolo[3,2-b]quinolines with One, Two, or Three Basic Side Chains.
G-quadruplex (G4) DNA structures in telomeres and oncogenic promoter regions are potential targets for cancer therapy, and G4 ligands have been shown to modulate telomerase activity and oncogene transcription. Herein we report the synthesis and G4 thermal stabilisation effects, determined by FRET melting assays, of 20 indolo[3,2-b]quinolines mono-, di-, and trisubstituted with basic side chains. Molecular modelling studies were also performed in an attempt to rationalise the ligands' binding poses with G4. Overall, the results suggest that ligand binding and G4 DNA thermal stabilisation increase with an N5-methyl or a 7-carboxylate group and propylamine side chains, whereas selectivity between G4 and duplex DNA appears to be modulated by the number and relative position of basic side chains. From all the indoloquinoline derivatives studied, the novel trisubstituted compounds 3 d and 4 d, bearing a 7-(aminoalkyl)carboxylate side chain, stand out as the most promising compounds; they show high G4 thermal stabilisation (ΔTm values between 17 and 8 °C) with an inter-G4 ΔTm trend of Hsp90A>KRas21R≈F21T>c-Kit2, 10-fold selectivity for G4 over duplex DNA, and 100-fold selectivity for the HCT116 cancer cell line (IC50 and IC90 : <10 μM) over primary rat hepatocytes. Compounds 3 d and 4 d also decreased protein expression levels of Hsp90 and KRas in HCT116 cancer cells
The future role of Scottish local government economic development
Since 1979 local authorities have been subjected to two main pressures from central government: increasing control over the range and type of services that can be provided; and greater emphasis on the private sector's role. So far, beyond being affected by the general financial constraints that local government has been placed under, the economic development services that many local authorities provide have escaped largely unscathed. This situation seems now likely to change radically as a result of three measures. These are:- a) the Local Government and Housing Bill; b) Scottish Enterprise; and c) changes to the structure of local government. When considered in isolation these measures contain much that is attractive and which could produce a more effective economic development service; for example, a specific power to carry out economic development and the creation of an integrated training and enterprise development service. However the argument that is put forward in this paper is that these measures have to be seen as complementary. They are part of an overall strategy intended to result in a major reduction in local government's local economic development activities
Regulation of the host immune system by helminth parasites
Helminth parasite infections are associated with a battery of immunomodulatory mechanisms, which impact all facets of the host immune response to ensure their persistence within the host. This broad-spectrum modulation of host immunity has intended and unintended consequences, both advantageous and disadvantageous. Thus the host may benefit from suppression of collateral damage during parasite infection, and from reduced allergic, autoimmune and inflammatory reactions. However, helminth infection can also be detrimental in reducing vaccine responses, increasing susceptibility to co-infection, and potentially reducing tumor immunosurveillance. In this review we will summarize the panoply of immunomodulatory mechanisms used by helminths, their potential utility in human disease, and prospective areas of future research
Regulation of pathogenesis and immunity in helminth infections
Helminths are multicellular eukaryotic parasites that infect over one quarter of the world’s population. Through coevolution with the human immune system, these organisms have learned to exploit immunoregulatory pathways, resulting in asymptomatic tolerance of infections in many individuals. When infections and the resulting immune responses become dysregulated, however, acute and chronic pathologies often develop. A recent international meeting focused on how these parasites modulate host immunity and how control of parasitic and immunopathological disease might be achieved
CD11c depletion severely disrupts Th2 induction and development in vivo
Although dendritic cells (DCs) are adept initiators of CD4+ T cell responses, their fundamental importance in this regard in Th2 settings remains to be demonstrated. We have used CD11c–diphtheria toxin (DTx) receptor mice to deplete CD11c+ cells during the priming stage of the CD4+ Th2 response against the parasitic helminth Schistosoma mansoni. DTx treatment significantly depleted CD11c+ DCs from all tissues tested, with 70–80% efficacy. Even this incomplete depletion resulted in dramatically impaired CD4+ T cell production of Th2 cytokines, altering the balance of the immune response and causing a shift toward IFN-γ production. In contrast, basophil depletion using Mar-1 antibody had no measurable effect on Th2 induction in this system. These data underline the vital role that CD11c+ antigen-presenting cells can play in orchestrating Th2 development against helminth infection in vivo, a response that is ordinarily balanced so as to prevent the potentially damaging production of inflammatory cytokines
The impact of negative selection on thymocyte migration in the medulla
Developing thymocytes are screened for self-reactivity before they exit the thymus, but how thymocytes scan the medulla for self antigens is unclear. Using two-photon microscopy, we observed that medullary thymocytes migrated rapidly and made frequent, transient contacts with dendritic cells. In the presence of a negative selecting ligand, thymocytes slowed, became confined to areas of approximately 30 mum in diameter and had increased contact with dendritic cells surrounding confinement zones. One third of polyclonal medullary thymocytes also showed confined, slower migration and may correspond to autoreactive thymocytes. Our data suggest that many autoreactive thymocytes do not undergo immediate arrest and death after encountering a negative selecting ligand but instead adopt an altered migration program while remaining in the medullary microenvironment
B Cells Participate in Thymic Negative Selection of Murine Auto-reactive CD4+ T Cells
It is well documented that thymic epithelial cells participate in the process of negative selection in the thymus. In recent years it was reported that also dendritic cells enter the thymus and contribute to this process, thus allowing for the depletion of thymocytes that are specific to peripherally expressed self-antigens. Here we report that also B cells may take part in the elimination of auto-reactive thymocytes. Using a unique mouse model we show that B cells induce negative selection of self-reactive thymocytes in a process that leads to the deletion of these cells whereas regulatory T cells are spared. These findings have direct implication in autoimmunity, as expression of a myelin antigen by B cells in the thymus renders the mice resistant to autoimmune inflammation of the CNS
- …