78 research outputs found

    Field-theoretical approach to particle oscillations in absorbing matter

    Get PDF
    The abab oscillations in absorbing matter are considered. The standard model based on optical potential does not describe the total abab transition probability as well as the channel corresponding to absorption of the bb-particle. We calculate directly the off-diagonal matrix element in the framework of field-theoretical approach. Contrary to one-particle model, the final state absorption does not tend to suppress the channels mentioned above or, similarly, calculation with hermitian Hamiltonian leads to increase the corresponding values. The model reproduces all the results on the particle oscillations, however it is oriented to the description of the above-mentioned channels. Also we touch on the problem of infrared singularities. The approach under study is infrared-free.Comment: 27 pages, 8 figure

    Critical Examination of the "Field-Theoretical Approach" to the Neutron-Antineutron Oscillations in Nuclei

    Full text link
    We demonstrate that so called "infrared divergences" which have been discussed in some publications during several years, do not appear within the correct treatment of analytical properties of the transition amplitudes, in particular, of the second order pole structure of the amplitudes describing the nnˉn - \bar n transition in nuclei. Explicit calculation with the help of the Feynman diagram technique shows that the neutron-antineutron oscillations are strongly suppressed in the deuteron, as well as in heavier nuclei, in comparison with the oscillations in vacuum. General advantages and some difficulties of the field theoretical methods applied in nuclear theory are reminded for the particular example of the parity violating npdγnp\to d\gamma capture amplitude.Comment: 15 pages, 4 figures; prepared for Eur.Phys.J.

    Limits on \boldmath n {\bar n} oscillations from nuclear stability

    Full text link
    The relationship between the lower limit on the nuclear stability lifetime as derived from the non disappearance of `stable` nuclei (Td  5.4 × 1031T_{d}~\gtrsim~5.4~\times~10^{31} yr), and the lower limit thus implied on the oscillation time (τnnˉ)(\tau_{n \bar n}) of a possibly underlying neutron-antineutron oscillation process, is clarified by studying the time evolution of the nuclear decay within a simple model which respects unitarity. The order-of-magnitude result τnnˉ2(Td/Γnˉ)1/2>2×108\tau_{n \bar n} \approx 2 (T_{d}/\Gamma_{\bar n})^{1/2} > 2 \times 10^{8} sec, where Γnˉ\Gamma_{\bar n} is a typical nˉ\bar n nuclear annihilation width, agrees as expected with the limit on τnnˉ\tau_{n \bar n} established by several detailed nuclear physics calculations, but sharply disagreeing by 15 orders of magnitude with a claim published recently in Phys. Rev. CRAP.Comment: 8 pages; this PRC version (accepted for publication, November 4 1999) differs from the original version only by a few minor editorial change

    Tubulohelical membrane arrays: From the initial observation to the elucidation of nanophysical properties and cellular function

    Get PDF
    Lipids undergo self-assembly to form ordered nonlamellar, nanoperiodic arrays both in vitro and in vivo. While engineering of such membrane arrays for technical devices is envisaged, we know little about their cellular function. Do they represent building blocks of an inherent cellular nanotechnology? Prospects for answering this question could be improved if the nanophysical properties of the membrane arrays could be studied in the context of specific cellular functions. Therefore, we draw attention to exceptional complex membrane arrays found in the renal epithelial cell line PtK2 that could provide perfect conditions for both biophysical and cell functional studies. The so-called tubulohelical membrane arrays (TUHMAs) combine nanoperiodicity of lipid membranes with that of helix-like proteinaceous core structures. Strikingly, they show several characteristics of dynamic, microtubule-associated single organelles. Our initial data indicate that TUHMA formation occurs in the depth of the cytoplasm under participation of cytoplasmic nucleoporins. Once matured, they may fuse with the nuclear membrane in polarized positions, either perpendicularly or in parallel to the nucleus. As a starting point for the initiation of functional studies we found a connection between TUHMAs and primary cilia, indicated by immunolabeling patterns of detyrosynated tubulin and cytoplasmic nucleoporins. We discuss these observations in the context of the ciliary cycle and of the specific requirement of ciliated renal epithelial cells for oriented cell division. Finally, we raise the question of whether putative nanooptical properties of TUHMAs could serve for communicating orientation between dividing cells

    High added-value compounds with antibacterial properties from Ginja Cherries by-products

    Get PDF
    Purpose: To test the antimicrobial properties of the extracts of stems and leaves of Ginja cherry plant. Both stems and leaves are waste in the production of the cherry liquor and they could be valorised by extracting valuable compounds, making the process more environmentally sustainable. Methods: The ethanol extracts from both stems and leaves were analysed by LC-ESI/MS to determine the phenolic composition. They were tested against Gram positive and Gram negative bacteria (Bacillus subtilis, Staphylococcus aureus MSSA, Staphylococcus aureus MRSA, Pseudomonas sp., Pseudomonas aeruginosa, Flavobacterium sp., Escherichia coli, Salmonella), using the disk diffusion technique and the broth dilution technique. Results: The extracts showed good antibacterial properties towards Gram positive and Gram negative bacteria. The values of the Minimum Inhibitory Concentration (MIC) were lower for Gram positive bacteria (10–15 mg/ml) than for Gram negative ones (10–100 mg/ml). The values of Minimum Bactericidal Concentration (MBC) were between 2 and 4 times higher than the MICs. Conclusions: The waste from Ginja cherry plants can be successfully employed to extract valuable compounds such as polyphenols, with antibacterial properties.info:eu-repo/semantics/publishedVersio

    Induction of tumour-specific CD8+ cytotoxic T lymphocytes by tumour lysate-pulsed autologous dendritic cells in patients with uterine serous papillary cancer

    Get PDF
    Uterine serous papillary carcinoma is a highly aggressive variant of endometrial cancer histologically similar to high grade ovarian cancer. Unlike ovarian cancer, however, it is a chemoresistant disease from onset, with responses to combined cisplatinum-based chemotherapy in the order of 20% and an extremely poor prognosis. In this study, we demonstrate that tumour lysate-pulsed autologous dendritic cells can elicit a specific CD8+ cytotoxic T lymphocyte response against autologous tumour target cells in three patients with uterine serous papillary cancer. CTL from patients 1 and 2 expressed strong cytolytic activity against autologous tumour cells, did not lyse autologous lymphoblasts or autologous EBV-transformed cell lines, and were variably cytotoxic against the NK-sensitive cell line K-562. Patient 3 CD8+ T cells expressed a modest but reproducible cytotoxicity against autologous tumour cells only at the time of the first priming. Further priming attempts with PBL collected from patient 3 after tumour progression in the lumboaortic lymph nodes were unsuccesful. Cytotoxicity against autologous tumour cells could be significantly inhibited by anti-HLA class I (W6/32) and anti-LFA-1 MAbs. Highly cytotoxic CD8+ T cells from patients 1 and 2 showed a heterogeneous CD56 expression while CD56 was not expressed by non-cytotoxic CD8+ T cells from patient 3. Using two colour flow cytometric analysis of intracellular cytokine expression at the single cell level, a striking dominance of IFN-γ expressors was detectable in CTL populations of patients 1 and 2 while in patient 3 a dominant population of CD8+ T cells expressing IL-4 and IL-10 was consistently detected. Taken together, these data demonstrate that tumour lysate-pulsed DC can be an effective tool in inducing uterine serous papillary cancer-specific CD8+ CTL able to kill autologous tumour cells in vitro. However, high levels of tumour specific tolerance in some patients may impose a significant barrier to therapeutic vaccination. These results may have important implications for the treatment in the adjuvant setting of uterine serous papillary cancer patients with active or adoptive immunotherapy

    Effect of selected flavonoids on glycosaminoglycans in human skin fibroblasts

    No full text
    Purpose: Glycosaminoglycans (GAGs) and proteoglycans (PG) in addition to collagen are the main components of extracellular matrix (ECM). They play an important role in intercellular communication and interactions between cells and ECM. The biological changes in ECM that occur during aging are induced by decrease in GAG biosynthesis. The purpose of this study was to evaluate the effect of selected flavonoids isolated from Cirsium palustre (L.) Scop. on GAG content in human skin fibroblasts. Materials and methods: Human skin fibroblasts were treated with eriodictyol 7-O-glucoside (C1), 6-hydroxyluteolin 7-O-glucoside (C2), scutellarein 7-O-glucoside (C3) and pedalitin (C4) at 1, 20 and 40 μM for 24 h. Concentration of GAGs in the medium was assayed using method based on their ability to bind the cationic dye 1,9- dimethylmethylene blue (DMMB). Results: C1, C2 and C4 at concentration of 20 and 40 µM significantly increased content of sulphated GAGs in the medium. In contrast, treatment of cells with compound C3 did not have a statistically significant impact on GAG level. Ascorbic acid used as a positive control at 50 µM showed no effect on GAG concentration and increased their content at 100 µM but to a much lower extent than flavonoids. Conclusion: Flavonoids C1, C2 and C4 showed greater than ascorbic acid stimulatory impact on GAGs in healthy human skin fibroblasts, demonstrating their therapeutic potential in the aging
    corecore