45 research outputs found

    Apportioning sources of organic matter in streambed sediments: An integrated molecular and compound-specific stable isotope approach

    Get PDF
    We present a novel application for quantitatively apportioning sources of organic matter in streambed sediments via a coupled molecular and compound-specific isotope analysis (CSIA) of long-chain leaf wax n-alkane biomarkers using a Bayesian mixing model. Leaf wax extracts of 13 plant species were collected from across two environments (aquatic and terrestrial) and four plant functional types (trees, herbaceous perennials, and C3 and C4 graminoids) from the agricultural River Wensum catchment, UK. Seven isotopic (δ13C27, δ13C29, δ13C31, δ13C27–31, δ2H27, δ2H29, and δ2H27–29) and two n-alkane ratio (average chain length (ACL), carbon preference index (CPI)) fingerprints were derived, which successfully differentiated 93% of individual plant specimens by plant functional type. The δ2H values were the strongest discriminators of plants originating from different functional groups, with trees (δ2H27–29 = − 208‰ to − 164‰) and C3 graminoids (δ2H27–29 = − 259‰ to − 221‰) providing the largest contrasts. The δ13C values provided strong discrimination between C3 (δ13C27–31 = − 37.5‰ to − 33.8‰) and C4 (δ13C27–31 = − 23.5‰ to − 23.1‰) plants, but neither δ13C nor δ2H values could uniquely differentiate aquatic and terrestrial species, emphasizing a stronger plant physiological/biochemical rather than environmental control over isotopic differences. ACL and CPI complemented isotopic discrimination, with significantly longer chain lengths recorded for trees and terrestrial plants compared with herbaceous perennials and aquatic species, respectively. Application of a comprehensive Bayesian mixing model for 18 streambed sediments collected between September 2013 and March 2014 revealed considerable temporal variability in the apportionment of organic matter sources. Median organic matter contributions ranged from 22% to 52% for trees, 29% to 50% for herbaceous perennials, 17% to 34% for C3 graminoids and 3% to 7% for C4 graminoids. The results presented here clearly demonstrate the effectiveness of an integrated molecular and stable isotope analysis for quantitatively apportioning, with uncertainty, plant-specific organic matter contributions to streambed sediments via a Bayesian mixing model approach

    Раціональність як реляційність: синтетична єдність відмінностей в трансцендентальному просторі границі

    Get PDF
    У статті висвітлюються проблеми «постсучасної» раціональності, визначальною характеристикою котрої покладається іманентна пограничність. Відношення та Іншість розглядаються як визначальні предикати раціональності, які в класичній парадигмі імплікують принципи рефлексійності, конструктивності, співмірності. Корелятами означених принципів у постструктуралістській раціональності визначаються повторність (ітеративність), фрагментарність, подвоєння, розрізняння. Конгруентність класичної та постсучасної раціональності зумовлена еквівалентністю понять трансцендентальності та пограничності. Синтетична єдність (розбіжність та зв'язок) з її специфікацією принципами пов’язання та розрізняння, визначається через медіативну функцію судження, структура якого фундується параметрами реляційності.В статье освещаются проблемы «постсовременной» рациональности, определяющей характеристикой которой полагается имманентная пограничность. Отношение и Другость рассматриваются как определяющие предикаты рациональности, которые имплицируют принципы рефлексивности, конструктивности, соразмерности в классической парадигме. Коррелятами обозначенных принципов в постструктуралистской рациональности являются повторность (итеративность), фрагментарность, удвоение, различание. Конгруэнтность классической и постсоврменной рациональности обусловлена эквивалентностью понятий трансцендентальности и пограничности. Синтетическое единств (различие и связь) с его спецификацией в позициях увязывания и различания, определяется через медиативную функцию суждения, структура которого фундируется параметрами реляционности.The paper illuminates some problems of the post-contemporary rationality that possesses the immanent borderness as its distinctive feature. The Relationality and the Anotherness are investigaled as the common predicates of rationality that implicate the “classical” principles of reflexity, constructiveness, proportionality. The main principles of the poststructuralistic rationality correlating with the classical ones are recurrence (iterativity), doubleness, fragmentariness, differance. The congruence of the classical rationality and the post-contemporary one is caused by the equivalency of the concepts “transcendentality” and “borderness”. The synthetical unity (relation between deviation and connection) with its specification by the linking and the differance principles is determined by the mediative function of the assertion that is structured by the relationality parameters

    Origin and fate of phosphorus in the Seine river watershed

    No full text
    National audienc

    A Novel High‐Resolution In Situ Tool for Studying Carbon Biogeochemical Processes in Aquatic Systems: The Lake Aiguebelette Case Study

    No full text
    International audienceInland waters are a significant source of atmospheric methane (CH 4) (DelSontro, Beaulieu, & Downing, 2018; Rosentreter et al., 2021; Saunois et al., 2019), which is a greenhouse gas (GHG) 34-85 times stronger than carbon dioxide (on 100 to 20-year timescales including feedbacks; Myhre et al., 2013) and responsible for ∼23% of global radiative forcing since 1,750 (Etminan et al., 2016). Of the GHGs produced by inland waters (i.e., carbon dioxide, CH 4 and nitrous oxide), CH 4 is responsible for ∼75% of the climatic impact of aquatic GHG emissions (DelSontro, Beaulieu, & Downing, 2018) with aquatic CH 4 emissions comparable to the largest global CH 4 emitters-wetlands and agriculture (Saunois et al., 2019). Considering that aquatic systems contribute up to half of global CH 4 emissions (Rosentreter et al., 2021), and the fact that CH 4 is predominantly formed in anoxic environments such as lake sediments (Bastviken et al., 2004), the source and quantification of ubiquitous Abstract Lakes and reservoirs are a significant source of atmospheric methane (CH 4), with emissions comparable to the largest global CH 4 emitters. Understanding the processes leading to such significant emissions from aquatic systems is therefore of primary importance for producing accurate projections of emissions in a changing climate. In this work, we present the first deployment of a novel membrane inlet laser spectrometer (MILS) for fast simultaneous detection of dissolved CH 4 , ethane (C 2 H 6) and the stable carbon isotope of methane (δ 13 CH 4). During a 1-day field campaign, we performed 2D mapping of surface water of Lake Aiguebelette (France). Average dissolved CH 4 concentrations and δ 13 CH 4 were 391.9 ± 156.3 nmol L-1 and-67.3 ± 3.4‰ in the littoral area and 169.8 ± 26.6 nmol L-1 and-61.5 ± 3.6‰ in the pelagic area. The dissolved CH 4 concentration in the pelagic zone was 50 times larger than the concentration expected at equilibrium with the atmosphere, confirming an oversaturation of dissolved CH 4 in surface waters over shallow and deep areas. The results suggest the presence of CH 4 sources less enriched in 13 C in the littoral zone (presumably the littoral sediments). The CH 4 pool became more enriched in 13 C with distance from shore, suggesting that oxidation prevailed over epilimnetic CH 4 production and it was further confirmed by an isotopic mass balance technique with the high-resolution data. This new in situ fast response sensor allows one to obtain unique high-resolution and high-spatial coverage data sets within a limited amount of survey time. This tool will be useful in the future for studying processes governing CH 4 dynamics in aquatic systems

    Sub-daily variability of suspended sediment fluxes in small mountainous catchments &ndash implications for community-based river monitoring

    Get PDF
    International audienceAccurate estimates of suspended sediment yields depend on effective monitoring strategies. In mountainous environments undergoing intense seasonal precipitation, the implementation of such monitoring programs relies primarily on a rigorous study of the temporal variability of fine sediment transport. This investigation focuses on seasonal and short-term variability in suspended sediment flux in a subhumid region of the Mexican Volcanic Belt. Intensive monitoring was conducted during one year in four contrasting catchments (3 to 630 km2). Analyses revealed significant temporal variability in suspended sediment export over various time scales, with between 63 and 97% of the annual load exported in as little as 2% of the time. Statistical techniques were used to evaluate the sampling frequency required to get reliable estimates of annual sediment yield at the four sites. A bi-daily sampling scheme would be required at the outlet of the 630 km2 catchment, whereas in the three smaller catchments (3-12 km2), accurate estimates would inevitably require hourly monitoring. At the larger catchment scale, analysis of the sub-daily variability of fine sediment fluxes showed that the frequency of sampling could be lowered by up to 100% (i.e. from bi-daily to daily) if a specific and regular sampling time in the day was considered. In contrast, conducting a similar sampling strategy at the three smaller catchments could lead to serious misinterpretation (i.e. up to 1000% error). Our findings emphasise the importance of an analysis of the sub-daily variability of sediment fluxes in mountainous catchments. Characterising this variability may offer useful insights for improving the effectiveness of community-based monitoring strategies in rural areas of developing countries. In regions where historical records based on discrete sampling are available, it may also help assessing the quality of past flux estimates. Finally, the study confirms the global necessity of acquiring more high frequency data in small mountainous catchments, especially in poorly gauged areas

    Downstream erosion and deposition dynamics of fine suspended sediments due to dam flushing

    No full text
    International audienceFine sediment dynamics downstream dams is a key issue when dealing with environmental impact of hydraulic flushing. This paper presents an analysis of six field campaigns carried out during dam flushing events (in June 2006, 2007, 2009, 2010, 2011, and 2012) in the Arc- Isere river system in the Northern French Alps. Suspended sediment concentrations (SSC) and discharges were evaluated using direct measurements or/and 1D hydraulic modelling at up to 14 locations along the 120 kilometres-long river channel. The total suspended sediment flux (SSF) is analysed along the Arc and Isere rivers for each Arc dam flushing event. Uncertainties were quantified based on a propagation method of both measurement and modelling errors. The resulting confidence interval provides elements of discussion on the significance of the sediment mass balance between two consecutive measurement sites. Whereas the discharge time-series of each flushing event is roughly the same, the quantity of fine sediments removed from the reservoirs varied from 10,000 tons in 2007 to 40,000 tons in 2006. Also, a significant erosion is observed in the river system for some events (20,000 tons in 2007) while the SSF barely varied for other events (in 2009 and 2011). This detailed data set allows to identify specific locations in the river network where deposition or erosion occurred. This dynamics is closely related to both the hydrology in the upper Isere River and the morphology of the Arc and Isere rivers, which have been affected by the 2008 and 2010 floods

    Long term high frequency sediment observatory in an alpine catchment: the Arc‐Isère rivers, France

    No full text
    International audienceWe present a dataset on to the Arc-Isere long-term environmental research observatory, which is part of the Rhone Basin Long Term Environmental Research Observatory. This alpine catchment located in the French Alps is characterized by high Suspended Particulate Matter (SPM) in anthropogenized valleys. Suspended Sediment Concentrations (SSC) naturally observed in the river are very high, ranging from a few tens of milligrams per litre at low flow to tens of grams per litre during major natural hydrological events (floods, debris flows) or river dam hydraulic flushes. One research objective related to this site is to better understanding the SSC dynamics along the river using a system of nested catchments (Arvan, Arc, and Isere) in order to assess both temporal and spatial dynamics. The data allow the quantification of fine sediment yields and also the evaluation of possible morphological changes due to fine sediment deposition or resuspension. Additionally, the observatory database support studies on contaminants (either dissolved or particulate contaminants). Our monitoring includes six stations with high frequency (2-30 min) streamflow, SSC measurement using turbidity sensors, and associated automatic sampling. Discharge is measured via water level measurements and a rating curve. The oldest station (Grenoble-campus) started recording discharge and concentration data from April 2006 while others stations were built between 2009 and 2011. Data are available in an online data website called 'Base de Donnees des Observatoires en Hydrologie' (Hydrological observatory database, ) with a DOI reference for the dataset. The hydrological and sediment transport time series are stored, managed and made available to a wide community with unfettered access in order to be used at their full extent. This database is used as a data exchange tool for both scientists and operational end-users and there is an associated online tool to compute integrated fluxes
    corecore