14 research outputs found

    Encoding of tangential torque in responses of tactile afferent fibres innervating the fingerpad of the monkey

    No full text
    Torsional loads are ubiquitous during everyday dextrous manipulations. We examined how information about torque is provided to the sensorimotor control system by populations of tactile afferents. Torsional loads of different magnitudes were applied in clockwise and anticlockwise directions to a standard central site on the fingertip. Three different background levels of contact (grip) force were used. The median nerve was exposed in anaesthetized monkeys and single unit responses recorded from 66 slowly adapting type-I (SA-I) and 31 fast adapting type-I (FA-I) afferents innervating the distal segments of the fingertips. Most afferents were excited by torque but some were suppressed. Responses of the majority of both afferent types were scaled by torque magnitude applied in one or other direction, with the majority of FA-I afferent responses and about half of SA-I afferent responses scaled in both directions. Torque direction affected responses in both afferent types, but more so for the SA-I afferents. Latencies of the first spike in FA-I afferent responses depended on the parameters of the torque. We used a Parzen window classifier to assess the capacity of the SA-I and FA-I afferent populations to discriminate, concurrently and in real-time, the three stimulus parameters, namely background normal force, torque magnitude and direction. Despite the potentially confounding interactions between stimulus parameters, both the SA-I and the FA-I populations could extract torque magnitude accurately. The FA-I afferents signalled torque magnitude earlier than did the SA-I afferents, but torque direction was extracted more rapidly and more accurately by the SA-I afferent population

    Mechanisms of human cerebellar dysmetria: experimental evidence and current conceptual bases.

    Get PDF
    The human cerebellum contains more neurons than any other region in the brain and is a major actor in motor control. Cerebellar circuitry is unique by its stereotyped architecture and its modular organization. Understanding the motor codes underlying the organization of limb movement and the rules of signal processing applied by the cerebellar circuits remains a major challenge for the forthcoming decades. One of the cardinal deficits observed in cerebellar patients is dysmetria, designating the inability to perform accurate movements. Patients overshoot (hypermetria) or undershoot (hypometria) the aimed target during voluntary goal-directed tasks. The mechanisms of cerebellar dysmetria are reviewed, with an emphasis on the roles of cerebellar pathways in controlling fundamental aspects of movement control such as anticipation, timing of motor commands, sensorimotor synchronization, maintenance of sensorimotor associations and tuning of the magnitudes of muscle activities. An overview of recent advances in our understanding of the contribution of cerebellar circuitry in the elaboration and shaping of motor commands is provided, with a discussion on the relevant anatomy, the results of the neurophysiological studies, and the computational models which have been proposed to approach cerebellar function.Journal ArticleResearch Support, Non-U.S. Gov'tReviewSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore