3,049 research outputs found

    AER Neuro-Inspired interface to Anthropomorphic Robotic Hand

    Get PDF
    Address-Event-Representation (AER) is a communication protocol for transferring asynchronous events between VLSI chips, originally developed for neuro-inspired processing systems (for example, image processing). Such systems may consist of a complicated hierarchical structure with many chips that transmit data among them in real time, while performing some processing (for example, convolutions). The information transmitted is a sequence of spikes coded using high speed digital buses. These multi-layer and multi-chip AER systems perform actually not only image processing, but also audio processing, filtering, learning, locomotion, etc. This paper present an AER interface for controlling an anthropomorphic robotic hand with a neuro-inspired system.Unión Europea IST-2001-34124 (CAVIAR)Ministerio de Ciencia y Tecnología TIC-2003-08164-C03-02Ministerio de Ciencia y Tecnología TIC2000-0406-P4- 0

    A new self-organizing neural gas model based on Bregman divergences

    Get PDF
    In this paper, a new self-organizing neural gas model that we call Growing Hierarchical Bregman Neural Gas (GHBNG) has been proposed. Our proposal is based on the Growing Hierarchical Neural Gas (GHNG) in which Bregman divergences are incorporated in order to compute the winning neuron. This model has been applied to anomaly detection in video sequences together with a Faster R-CNN as an object detector module. Experimental results not only confirm the effectiveness of the GHBNG for the detection of anomalous object in video sequences but also its selforganization capabilities.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Effect of preparation conditions on the polymorphism and transport properties of lanthanum molybdates

    Get PDF
    In this work, La6MoO12-based compounds were investigated as part of a new family of materials very competitive as hydrogen separation membranes [1,2]. La5.4MoO11.1 was synthesized by the freeze-drying precursor method and the calcination conditions were optimized in order to obtain single phases. Several cooling rates were applied and different polymorphs were obtained: a simple cubic fluorite symmetry (Fm-3m) for the sample cooled by quenching, and two different rhombohedral (R-3) space groups for the samples cooled at 50 ºC•min-1 and 0.5 ºC•min-1 (see Figure below). For the quenched sample, the Rietveld refinement was satisfactory in a Fm-3m space group. For the other two compositions no structural model was available and were indexed in a R-3 space group, however some small reflections were not given any intensity by the model used. Transmission electron microscopy confirmed the presence of superstructures for those samples. All ceramic materials were obtained with relative densities close to 100% after sintering at 1500 ºC. Stability studies demonstrated that all three polymorphs were stable in oxidizing and reducing conditions at 800 ºC for 48 hours. The three samples present a significant proton contribution to the conductivity at temperatures lower than 800 ºC. These results were confirmed by thermogravimetric analysis. The highest conductivity values were observed for the samples prepared by quenching. The three polymorphs display a small p-type electronic contribution to the overall conductivity in oxidizing conditions and n-type electronic one in very reducing conditions, much more significant for the samples cooled by quenching and at 50 ºC•min-1.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Frequency shift on the potential-dependent surface-enhanced Raman scattering of pyridine: simplified models for metal and solvent effects

    Get PDF
    The electronic structure of adsorbates is altered when it interacts with a surface, modifying the properties of both entities and giving rise to interesting phenomena related to heterogeneous catalysis or molecular electronics. If such surface is a metallic substrate, the electrode potential can be used to tune this interaction. Potential-dependent Surface-Enhanced Raman Scattering (SERS) is a particularly useful technique to study the induced effects on the molecule when the metal-adsorbate surface complex is formed, as the observed frequency shifts of the vibrational modes can provide information about it. However, from the computational point of view, these systems are difficult to model, because the macroscopic metal cannot be modelled easily using quantum mechanics. As an approach, we propose a simple model using silver atomic wires with different size and charge bonded to the molecule (AgnPyq, n = 2,3,5,7 and q = 0 and ±1 for n even and odd, respectively) which has been developed by the group and provides a good description of the effect of the electrode potential on the chemical enhancement mechanism of SERS.1-3 Electronic calculations were performed using Density Functional Theory (DFT). In order to study the frequency shifts, solvent effects have been taken into account by using the Polarizable Continuum Model (PCM). We have used three different functionals (B3LYP, PW91 and M06HF) and two basis sets (LANL2DZ for all atoms and LANL2DZ for Ag and 6-31G(d) for C,N,H) and, in all cases, a good agreement is achieved in terms of amplitude and trend of the frequency shift for most of the vibrational modes, especially when solvent interactions are included. The method was extended to other metals and solvents giving results in agreement with the available experimental data.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    The impact of oral communicative strategies through cooperative work

    Get PDF
    114 Páginas.Este estudio de investigación examina la implementación de estrategias comunicativas (estrategias comunicativas compensatorias) a través de actividades de trabajo cooperativo para mejorar y potenciar la comunicación de la lengua extranjera de un grupo de 12 estudiantes de la Licenciatura en Educacion Basica con Enfasis en Humanidades – y 18 estudiantes del programa de Licenciatura en Matematicas de la Universidad de Córdoba. En este estudio, se llevó a cabo una investigación-acción. El estudio fue realizado por dos investigadores que reunieron los datos en dos etapas o fases. En la primera etapa tuvo lugar la identificación del problema y la aplicación de algunos instrumentos de recolección de datos con el fin de tomar decisiones para la aplicación de las actividades y para tener en cuenta las preferencias de los participantes in términos de aprendizaje. La segunda etapa consistió en la aplicación de estrategias de compensación comunicativas dentro de un grupo de actividades y el diseño de diferentes herramientas de recopilación de datos. Los datos recogidos fueron analizados y categorizados basados en la teoría de Grounded en donde un proceso de triangulación cualitativa de todos los instrumentos aplicados fue llevado a cabo. Al final de este proceso, los hallazgos y resultados sugirieron que la implementación de estrategias de compensación comunicativas y la realización de actividades de trabajo cooperativo y/o en grupo tuvieron una mejoría significativa en el desempeño y producción oral de los estudiantes

    Charge Transfer mechanism in the Surface Enhanced Raman Scattering of 2,2'-bipyridine recorded on a silver electrode

    Get PDF
    Nowadays, Surface Enhanced Raman Spectroscopy (SERS) has become a powerful technique to investigate the electronic structure of surface-molecule hybrid systems due to the huge enhancement of the Raman signal. It is established that the origin of this enhancement has two main contributions; the electromagnetic (EM), related to surface plasmons, and the chemical mechanism, due to resonant charge transfer (CT) processes between the adsorbate and the metal. With the aim to investigate the SERS-CT of bipyridine and to identify charge transfer process, the spectra were recorded on silver electrode by using three different wavelengths (473, 532 and 785 nm) in a range from 0.0 up to -1.4 V electrode potential. The electrode potential was modelled in the calculations with atomic silver wires of different size and charge attached to the BPy molecule (AgnBPyq, with q = 0 for n = 2 and q = ±1 for n = 3, 5, 7) and were computed with Density Functional Theory (DFT). Although BPy shows a trans conformation in solution, a cis conformation was chosen for its chelating properties. The results indicate that the intensification of the ~1550 cm-1 band at negative potentials is due the Franck-Condon factors related to the resonant CT process from the metal to the BPy molecule.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    An MS-CASPT2 Study of the Photodecomposition of 4- Methoxyphenyl Azide. Role of Internal Conversion and Intersystem Crossing

    Get PDF
    Aryl azides photochemistry is strongly dependent on the substituent relative position, as has been studied by time resolved resonant Raman (TR3) spectroscopy for 4-methoxyphenyl azide and its isomer 3-methoxyphenyl azide. When irradiated at 266 nm, the former results in 4,4’-dimethoxyazobenzene whereas the latter forms 1,2-didehydroazepine. It is proposed that the key step of the reactions is the formation of a nitrene derivative. Recently, it has been proposed by us that nitrenes might have a relevant role in the Surface-Enhanced Raman Scattering (SERS) of p-aminothiophenol, however, the molecular mechanism is not well known in neither of these cases. Therefore, we studied the photodecomposition of 4-methoxyphenyl azide using multiconfigurational self-consistent field methods (MC-SCF) with the CAS-SCF and MS-CASPT2 approximations and calculated the resonant Raman spectra of the relevant species using a multi-state version of Albrecht’s vibronic theory. The results propose that the reaction follows a two steps sequence after irradiation at 266 nm: an intersystem crossing 21A’/23A’’ which decays through a 21A’/21A’’ conical intersection producing molecular nitrogen and triplet 4-methoxyphenyl nitrene in its ground state.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Modeling the effect of the electrode potential in SERS by electronic structure calculations.

    Get PDF
    Surface Enhanced Raman Spectroscopy (SERS), due to the ability of greatly intensify the weak Raman signal of molecules adsorbed to metal surfaces, has proven to be a very useful tool to investigate changes in the electronic structure of metal-molecule surface complex. A deep knowledge of the electronic structure of these metal-molecule hybrid systems is key in electrochemistry, catalysis, plasmonics, molecular electronics, and in the development of selective and ultra-sensitive analytical sensors. The origin of this huge enhancement in SERS is due to two contributions: the electromagnetic (EM), related to surface plasmons, and the chemical mechanism, due to resonant charge transfer (CT) process between the adsorbate and the metal (CTSERS). Unfortunately, the SERS implies very complex phenomena where the molecule and the metal nanoparticle are involved. This fact makes challenging to build realistic theoretical models that take into account both the metal and the molecule at quantum level. We propose a methodology, based on DFT and ab initio electronic calculations, to simulate the effect of the electrode potential on the absorption, on the charge transfer states energies, and on the electronic excitations in metal-molecule hybrid systems from a microscopic point of view. This methodology consists on the prediction of Raman intensities from ab initio calculations of the geometries or the energy gradients at the excited states Franck-Condon point, bringing the possibility to predict the intensities in CTSERS as well as in resonance Raman without the need to know the excited state geometries, not always feasible to compute. The microscopic model adopted to mimic the effect of the interphase electric potential consist in a molecule adsorbed to a linear silver cluster [Agn-Adsorbate]q, were n is the number of silver atoms, and the total charge of the system (q) is zero for n=2 and q=±1 for n=1, 3 and 7.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Control PD de Robots: Dinámica de Actuadores y Nueva Sintonía

    Get PDF
    ResumenEn el presente trabajo se estudia el control PD con compensación deseada de gravedad de robots rígidos. Se introduce un nuevo criterio, menos conservador, para seleccionar las ganancias proporcionales. Se demuestra estabilidad asintótica global cuando se toma en consideración durante el diseño la dinámica eléctrica de los motores de CD con escobillas usados como actuadores. Este resultado no requiere que la dinámica eléctrica de los actuadores sea rápida comparada con la dinámica de la parte mecánica. Se presenta un estudio formal de la técnica de control conocida como control de par la cual es ampliamente utilizada en la práctica industrial

    Colloidal stability of gadolinium-doped ceria powder in aqueous and non-aqueous media

    Get PDF
    In this work the colloidal behaviour of Ce0.9Gd0.1O2-δ powder in aqueous and non-aqueous media (ethanol) is studied. Commercial powder was characterised by particle size distribution, specific surface area measurements, X-ray diffraction and scanning electron microscopy. Diluted suspensions were characterised by particle size distribution and zeta potential, using dynamic light scattering and laser Doppler velocimetry principles, respectively. The solubility of the powder in water as a function of pH was analysed by inductively coupled plasma atomic emission spectrometry. Colloidal stability was studied as a function of pH, type and concentration of dispersants (polyacrylic-based deflocculant in water and a phosphate ester in ethanol). The time stability of the suspensions was analysed by multiple light scattering. The most stable suspension was obtained with a phosphate ester content of 2.0wt% in ethanol. Finally, preliminary coatings have been obtained by dip coating using concentrated suspensions, which could be accessible to industrial scale so that they can be used as interlayers in solid oxide fuel cells. © 2012 Elsevier Ltd.We would like to thank grants PSE-120000-2008-0040 and MAT2009-14324-C02-01, financed by the Spanish Government (Ministerio de Ciencia e Innovación) and Feder Program of the European Community, and PI/116, financed by the Aragón Government.Peer Reviewe
    corecore