2,330 research outputs found
Rapid method for determining nitrogen in tantalum and niobium alloys
Adaptation of commercial instrument which measures nitrogen and oxygen in steel gave results in less than four minutes. Sample is heated in helium atmosphere in single-use graphite crucible. Platinum flux facilitates melting of sample. Released gases are separated chromatographically and measured in thermal-conductivity cell
Certificate Transparency with Enhancements and Short Proofs
Browsers can detect malicious websites that are provisioned with forged or
fake TLS/SSL certificates. However, they are not so good at detecting malicious
websites if they are provisioned with mistakenly issued certificates or
certificates that have been issued by a compromised certificate authority.
Google proposed certificate transparency which is an open framework to monitor
and audit certificates in real time. Thereafter, a few other certificate
transparency schemes have been proposed which can even handle revocation. All
currently known constructions use Merkle hash trees and have proof size
logarithmic in the number of certificates/domain owners.
We present a new certificate transparency scheme with short (constant size)
proofs. Our construction makes use of dynamic bilinear-map accumulators. The
scheme has many desirable properties like efficient revocation, low
verification cost and update costs comparable to the existing schemes. We
provide proofs of security and evaluate the performance of our scheme.Comment: A preliminary version of the paper was published in ACISP 201
Testing non-nested structural equation models
In this paper, we apply Vuong's (1989) likelihood ratio tests of non-nested
models to the comparison of non-nested structural equation models. Similar
tests have been previously applied in SEM contexts (especially to mixture
models), though the non-standard output required to conduct the tests has
limited their previous use and study. We review the theory underlying the tests
and show how they can be used to construct interval estimates for differences
in non-nested information criteria. Through both simulation and application, we
then study the tests' performance in non-mixture SEMs and describe their
general implementation via free R packages. The tests offer researchers a
useful tool for non-nested SEM comparison, with barriers to test implementation
now removed.Comment: 24 pages, 6 figure
Comparison of inert-gas-fusion and modified Kjeldahl techniques for determination of nitrogen in niobium alloys
This report compares results obtained for the determination of nitrogen in a selected group of niobium-base alloys by the inert-gas-fusion and the Kjeldahl procedures. In the inert-gas-fusion procedure the sample is heated to approximately 2700 C in a helium atmosphere in a single-use graphite crucible. A platinum flux is used to facilitate melting of the sample. The Kjeldahl method consisted of a rapid decomposition with a mixture of hydrofluoric acid, phosphoric acid, and potassium chromate; distillation in the presence of sodium hydroxide; and highly sensitive spectrophotometry with nitroprusside-catalyzed indophenol. In the 30- to 80-ppm range, the relative standard deviation was 5 to 7 percent for the inert-gas-fusion procedure and 2 to 8 percent for the Kjeldahl procedure. The agreement of the nitrogen results obtained by the two techniques is considered satisfactory
Path integration mediated systematic search: A Bayesian model
The systematic search behaviour is a backup system that increases the chances of desert ants finding their nest entrance after foraging when the path integrator has failed to guide them home accurately enough. Here we present a mathematical model of the systematic search that is based on extensive behavioural studies in North African desert ants . Cataglyphis fortis. First, a simple search heuristic utilising Bayesian inference and a probability density function is developed. This model, which optimises the short-term nest detection probability, is then compared to three simpler search heuristics and to recorded search patterns of . Cataglyphis ants. To compare the different searches a method to quantify search efficiency is established as well as an estimate of the error rate in the ants' path integrator. We demonstrate that the Bayesian search heuristic is able to automatically adapt to increasing levels of positional uncertainty to produce broader search patterns, just as desert ants do, and that it outperforms the three other search heuristics tested. The searches produced by it are also arguably the most similar in appearance to the ant's searches
Energy benefits and emergent space use patterns of an empirically parameterized model of memory-based patch selection
Many species frequently return to previously visited foraging sites. This bias towards familiar areas suggests that remembering information from past experience is beneficial. Such a memory-based foraging strategy has also been hypothesized to give rise to restricted space use (i.e. a home range). Nonetheless, the benefits of empirically derived memory-based foraging tactics and the extent to which they give rise to restricted space use patterns are still relatively unknown. Using a combination of stochastic agent-based simulations and deterministic integro-difference equations, we developed an adaptive link (based on energy gains as a foraging currency) between memory-based patch selection and its resulting spatial distribution. We used a memory-based foraging model developed and parameterized with patch selection data of free-ranging bison Bison bison in Prince Albert National Park, Canada. Relative to random use of food patches, simulated foragers using both spatial and attribute memory are more efficient, particularly in landscapes with clumped resources. However, a certain amount of random patch use is necessary to avoid frequent returns to relatively poor-quality patches, or avoid being caught in a relatively poor quality area of the landscape. Notably, in landscapes with clumped resources, simulated foragers that kept a reference point of the quality of recently visited patches, and returned to previously visited patches when local patch quality was poorer than the reference point, experienced higher energy gains compared to random patch use. Furthermore, the model of memory-based foraging resulted in restricted space use in simulated landscapes and replicated the restricted space use observed in free-ranging bison reasonably well. Our work demonstrates the adaptive value of spatial and attribute memory in heterogeneous landscapes, and how home ranges can be a byproduct of non-omniscient foragers using past experience to minimize temporal variation in energy gains
Distributed Random Process for a Large-Scale Peer-to-Peer Lottery
Most online lotteries today fail to ensure the verifiability of the random
process and rely on a trusted third party. This issue has received little
attention since the emergence of distributed protocols like Bitcoin that
demonstrated the potential of protocols with no trusted third party. We argue
that the security requirements of online lotteries are similar to those of
online voting, and propose a novel distributed online lottery protocol that
applies techniques developed for voting applications to an existing lottery
protocol. As a result, the protocol is scalable, provides efficient
verification of the random process and does not rely on a trusted third party
nor on assumptions of bounded computational resources. An early prototype
confirms the feasibility of our approach
Main Chamber and Preburner Injector Technology
This document reports the experimental and analytical research carried out at the Penn State Propulsion Engineering Research Center in support of NASA's plan to develop advanced technologies for future single stage to orbit (SSTO) propulsion systems. The focus of the work is on understanding specific technical issues related to bi-propellant and tri-propellant thrusters. The experiments concentrate on both cold flow demonstrations and hot-fire uni-element tests to demonstrate concepts that can be incorporated into hardware design and development. The analysis is CFD-based and is intended to support the design and interpretation of the experiments and to extrapolate findings to full-scale designs. The research is divided into five main categories that impact various SSTO development scenarios. The first category focuses on RP-1/gaseous hydrogen (GH2)/gaseous oxygen (GO2) tri-propellant combustion with specific emphasis on understanding the benefits of hydrogen addition to RP-1/oxygen combustion and in developing innovative injector technology. The second category investigates liquid oxygen (LOX)/GH2 combustion at main chamber near stoichiometric conditions to improve understanding of existing LOX/GH2 rocket systems. The third and fourth categories investigate the technical issues related with oxidizer-rich and fuel-rich propulsive concepts, issues that are necessary for developing the full-flow engine cycle. Here, injector technology issues for both LOX/GH2 and LOX/RP-1 propellants are examined. The last category, also related to the full-flow engine cycle, examines injector technology needs for GO2/GH2 propellant combustion at near-stoichiometric conditions for main chamber application
Continuous arterial spin labeling (CASL) in the monkey brain at high magnetic field using a three-coil approach
CASL experiments in the monkey brain were performed at 4.7 T and 7 T using a separate labeling coil. Increased sensitivity and SNR were achieved by a custom-made three-coil setup and high magnetic field with its increased T1. We report the development and optimization of the setup and first experiments in the monkey (macaca mulatta). Parameters for continuous labeling (label power, label duration, post label delay) were optimized to measure gray matter rCBF and fCBF changes, reporting excellent multi-slice coverage at high resolution of 0.75 – 1 mm in-plane
Perfusion-based functional imaging in the monkey brain at 7T: investigations of CASL parameters
Perfusion-based imaging in the monkey primary visual cortex was performed at 7 T applying continuous arterial spin labeling (CASL). Increased perfusion sensitivity and SNR at high magnetic field (due to larger T1) was further optimized using a custom-made three-coil setup with a separate neck labeling coil. We investigated the labeling parameters to obtain relative fCBF changes in the anaesthetized monkey. We report excellent functional activation of striate cortex at high resolution of 0.75x0.9mm2 in-plane. Interestingly, the optimal parameter set for obtaining highest signal changes of rCBF are different from the reported values for imaging gray matter CBF
- …