40 research outputs found

    Immunolocalization of dually phosphorylated MAPKs in dividing root meristem cells of Vicia faba, Pisum sativum, Lupinus luteus and Lycopersicon esculentum

    Get PDF
    Key message In plants, phosphorylated MAPKs display constitutive nuclear localization; however, not all studied plant species show co-localization of activated MAPKs to mitotic microtubules. Abstract The mitogen-activated protein kinase (MAPK) signaling pathway is involved not only in the cellular response to biotic and abiotic stress but also in the regulation of cell cycle and plant development. The role of MAPKs in the formation of a mitotic spindle has been widely studied and the MAPK signaling pathway was found to be indispensable for the unperturbed course of cell division. Here we show cellular localization of activated MAPKs (dually phosphorylated at their TXY motifs) in both interphase and mitotic root meristem cells of Lupinus luteus, Pisum sativum, Vicia faba (Fabaceae) and Lycopersicon esculentum (Solanaceae). Nuclear localization of activated MAPKs has been found in all species. Colocalization of these kinases to mitotic microtubules was most evident in L. esculentum, while only about 50 % of mitotic cells in the root meristems of P. sativum and V. faba displayed activated MAPKs localized to microtubules during mitosis. Unexpectedly, no evident immunofluorescence signals at spindle microtubules and phragmoplast were noted in L. luteus. Considering immunocytochemical analyses and studies on the impact of FR180204 (an inhibitor of animal ERK1/2) on mitotic cells, we hypothesize that MAPKs may not play prominent role in the regulation of microtubule dynamics in all plant species

    Inter- and intrachromosomal asynchrony of cell division cycle events in root meristem cells of Allium cepa: possible connection with gradient of cyclin B-like proteins

    Get PDF
    Alternate treatments of Allium cepa root meristems with hydroxyurea (HU) and caffeine give rise to extremely large and highly elongated cells with atypical images of mitotic divisions, including internuclear asynchrony and an unknown type of interchromosomal asynchrony observed during metaphase-to-anaphase transition. Another type of asynchrony that cannot depend solely on the increased length of cells was observed following long-term incubation of roots with HU. This kind of treatment revealed both cell nuclei entering premature mitosis and, for the first time, an uncommon form of mitotic abnormality manifested in a gradual condensation of chromatin (spanning from interphase to prometaphase). Immunocytochemical study of polykaryotic cells using anti-β tubulin antibodies revealed severe perturbations in the microtubular organization of preprophase bands. Quantitative immunofluorescence measurements of the control cells indicate that the level of cyclin B-like proteins reaches the maximum at the G2 to metaphase transition and then becomes reduced during later stages of mitosis. After long-term incubation with low doses of HU, the amount of cyclin B-like proteins considerably increases, and a significant number of elongated cells show gradients of these proteins spread along successive regions of the perinuclear cytoplasm. It is suggested that there may be a direct link between the effects of HU-mediated deceleration of S- and G2-phases and an enhanced concentration of cyclin B-like proteins. In consequence, the activation of cyclin B-CDK complexes gives rise to an abnormal pattern of premature mitotic chromosome condensation with biphasic nuclear structures having one part of chromatin decondensed, and the other part condensed

    Influence of the light factor on the course of the cell cycle in the successive generations of the antheridial filaments of Chara vulgaris L.

    No full text
    The exposure to continuous light causes a rise of the mitotic index in the successive generations of the antheridial filaments of Chara vulgaris, whereas culture in darkness leads to a considerable depression of mitosis, and if prolonged, to its complete cessation. Light reverses the effect of the depression of mitosis caused by darkness: in the 16-, and 32-cell generations mitotic activity reappeares as early as after 3 h, but in the 2-, 4-, and 8-cell generations only after 18 h. The size of the cells in the antheridial filaments of plants exposed to continuous illumination is larger as compared with the control material. After being kept in darkness the cells become smaller. The analysis of the size of the latter suggests the inhibition of growth in initial and final periods of interphase. In all generations continuous light reduces the duration of the cell cycle while darkness protracts it. The duration of S phase is similar in all generations of antheridial filaments (ca. 16 h) and is not modified by the light conditions. Thus, the light factor seems to interfere mainly with G2 phase, and its role in the regulation of the cell cycle is correlated with the duration of this phase. The role of light in the kinetics of the cell cycle of the particular generations of antheridial filaments in Chara is discussed in the aspect of the nutritional requirements of cells, hormonal regulation and phytochrome

    DNA replication in relation to S phase duration in six angiosperm annual species.

    Full text link

    IAA and BAP affect protein phosphorylation-dependent processes during sucrose-mediated G1 to S and G2 to M transitions in root meristem cells of Vicia faba

    No full text
    In carbohydrate-starved root meristems of Vicia faba subsp. minor, the expression of two Principal Control Points located at the final stages of the G1 (PCP1) and G2 (PCP2) phases has been found to be correlated with a marked decrease of protein phosphorylation within cell nuclei, nucleoli and cytoplasm. Adopting the same experimental model in our present studies, monoclonal FITC conjugated antibodies that recognize phosphorylated form of threonine (αTPab-FITC) were used to obtain an insight about how the indole-3-acetic acid (IAA), benzyl-6-aminopurine (BAP), and the mixture of both phytohormones influence the time-course changes in an overall protein phosphorylation during sucrose-mediated PCP1→S and PCP2→M transitions. Unsuspectedly, neither IAA, BAP, nor the mixture of both phytohormones supplied in combination with sucrose did up-regulate protein phosphorylation. However using the block-and-release method, it was shown that root meristems of Vicia provided with sucrose alone indicated higher levels of αTPab-FITC. Contrarily, phytohormones supplied in combination with sucrose induced apparent decline in phosphorylation of cell proteins, which - when compared with the influence of sucrose alone - became increasingly evident in time. Thus, it seems probable, that a general decline in the amount of αTPab-FITC labeled epitopes may overlay specific phosphorylations and dephosphorylations governed by the main cell cycle kinases and phosphatases
    corecore