57 research outputs found

    Large-scale analysis of Drosophila core promoter function using synthetic promoters

    Get PDF
    The core promoter plays a central role in setting metazoan gene expression levels, but how exactly it “computes” expression remains poorly understood. To dissect its function, we carried out a comprehensive structure–function analysis in Drosophila. First, we performed a genome-wide bioinformatic analysis, providing an improved picture of the sequence motifs architecture. We then measured synthetic promoters’ activities of ~3,000 mutational variants with and without an external stimulus (hormonal activation), at large scale and with high accuracy using robotics and a dual luciferase reporter assay. We observed a strong impact on activity of the different types of mutations, including knockout of individual sequence motifs and motif combinations, variations of motif strength, nucleosome positioning, and flanking sequences. A linear combination of the individual motif features largely accounts for the combinatorial effects on core promoter activity. These findings shed new light on the quantitative assessment of gene expression in metazoans

    siRNA screening reveals JNK2 as an evolutionary conserved regulator of triglyceride homeostasis

    No full text
    Lipid homeostasis is essential for proper function of cells and organisms. To unravel new regulators of this system, we developed a screening procedure, combining RNA interference in HeLa cells and TLC, which enabled us to monitor modifications of lipid composition resulting from short, interfering RNA knock-downs. We applied this technique to the analysis of 600 human kinases. Despite the occurrence of off-target effects, we identified JNK2 as a new player in triglyceride (TG) homeostasis and lipid droplet metabolism and, more specifically, in the regulation of lipolysis. Similar control of the level of TGs and lipid droplets was observed for its Schizosaccharomyces pombe homolog, Sty1, suggesting an evolutionary conserved function of mitogen-activated protein kinases in the regulation of lipid storage in eukaryotic cells

    Two different pathways of phosphatidylcholine synthesis, the Kennedy Pathway and the Lands Cycle, differentially regulate cellular triacylglycerol storage.

    Get PDF
    BackgroundLipids are stored within cells in lipid droplets (LDs). They consist of a core of neutral lipids surrounded by a monolayer of phospholipids, predominantly phosphatidylcholine (PC). LDs are very dynamic and can rapidly change in size upon lipid uptake or release. These dynamics require a fast adaptation of LD surface. We have recently shown that two Lands cycle PC synthesizing enyzmes, LPCAT1 and LPCAT2 can localize to the LD surface.ResultsHere, we show that knock-down of both enzymes leads to an increase in LD size without changes in the total amount of neutral lipids, while interference with the de-novo Kennedy pathway PC biosynthesis is associated with changes in triacylglyceride synthesis. We show that function of LPCAT1 and 2 is conserved in Drosophila melanogaster by the ortholog CG32699. Furthermore we demonstrate that modulation of the LD pool by LPCAT1 influences the release of lipoprotein from liver cells.ConclusionActivity of the Kennedy pathway regulates the balance between phospholipids and neutral lipids, while the Lands cycle regulates lipid droplet size by regulating surface availability and influencing surface to volume ratio. Differences in lipid droplet size may account for differences in lipid dynamics and be relevant to understand lipid overload diseases

    Control of Cavity Noise

    No full text

    A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol.

    No full text
    Haploid genetic screening of cells under different types of mitochondrial perturbation shows that a pathway involving OMA1, DELE1 and the eIF2 alpha kinase HRI communicates mitochondrial stress to the cytosol to trigger the integrated stress response.Mitochondrial fidelity is tightly linked to overall cellular homeostasis and is compromised in ageing and various pathologies(1-3). Mitochondrial malfunction needs to be relayed to the cytosol, where an integrated stress response is triggered by the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2 alpha) in mammalian cells(4,5). eIF2 alpha phosphorylation is mediated by the four eIF2 alpha kinases GCN2, HRI, PERK and PKR, which are activated by diverse types of cellular stress(6). However, the machinery that communicates mitochondrial perturbation to the cytosol to trigger the integrated stress response remains unknown(1,2,7). Here we combine genome engineering and haploid genetics to unbiasedly identify genes that affect the induction of C/EBP homologous protein (CHOP), a key factor in the integrated stress response. We show that the mitochondrial protease OMA1 and the poorly characterized protein DELE1, together with HRI, constitute the missing pathway that is triggered by mitochondrial stress. Mechanistically, stress-induced activation of OMA1 causes DELE1 to be cleaved into a short form that accumulates in the cytosol, where it binds to and activates HRI via its C-terminal portion. Obstruction of this pathway can be beneficial or adverse depending on the type of mitochondrial perturbation. In addition to the core pathway components, our comparative genetic screening strategy identifies a suite of additional regulators. Together, these findings could be used to inform future strategies to modulate the cellular response to mitochondrial dysfunction in the context of human disease
    • 

    corecore