260 research outputs found

    Stronger diversity effects with increased environmental stress : a study of multitrophic interactions between oak, powdery mildew and ladybirds

    Get PDF
    Recent research has suggested that increasing neighbourhood tree species diversity may mitigate the impact of pests or pathogens by supporting the activities of their natural enemies and/or reducing the density of available hosts. In this study, we attempted to assess these mechanisms in a multitrophic study system of young oak (Quercus), oak powdery mildew (PM, caused by Erysiphe spp.) and a mycophagous ladybird (Psyllobora vigintiduo-punctata). We assessed ladybird mycophagy on oak PM in function of different neighbourhood tree species compositions. We also evaluated whether these species interactions were modulated by environmental conditions as suggested by the Stress Gradient Hypothesis. We adopted a complementary approach of a field experiment where we monitored oak saplings subjected to a reduced rainfall gradient in a young planted forest consisting of different tree species mixtures, as well as a lab experiment where we independently evaluated the effect of different watering treatments on PM infections and ladybird mycophagy. In the field experiment, we found effects of neighbourhood tree species richness on ladybird mycophagy becoming more positive as the target trees received less water. This effect was only found as weather conditions grew drier. In the lab experiment, we found a preference of ladybirds to graze on infected leaves from trees that received less water. We discuss potential mechanisms that might explain this preference, such as emissions of volatile leaf chemicals. Our results are in line with the expectations of the Natural Enemies Hypothesis and support the hypothesis that biodiversity effects become stronger with increased environmental stress

    Draft Genome Sequence of the Marine Streptomyces sp. Strain PP-C42, Isolated from the Baltic Sea

    Get PDF
    Streptomyces, a branch of aerobic Gram-positive bacteria represents the largest genus of actinobacteria. The streptomycetes are characterized by a complex secondary metabolism and produce over two-thirds of the clinically used natural antibiotics today. Here we report the draft genome sequence of a Streptomyces strain PP-C42 isolated from the marine environment. A subset of unique genes and gene clusters for diverse secondary metabolites as well as antimicrobial peptides (AMPs) could be identified from the genome, showing great promise as a source for novel bioactive compound

    Draft Genome Sequence of the Marine Streptomyces sp. Strain PP-C42, Isolated from the Baltic Sea

    Get PDF
    Streptomyces, a branch of aerobic Gram-positive bacteria represents the largest genus of actinobacteria. The streptomycetes are characterized by a complex secondary metabolism and produce over two-thirds of the clinically used natural antibiotics today. Here we report the draft genome sequence of a Streptomyces strain PP-C42 isolated from the marine environment. A subset of unique genes and gene clusters for diverse secondary metabolites as well as antimicrobial peptides (AMPs) could be identified from the genome, showing great promise as a source for novel bioactive compound

    Subset- and tissue-defined STAT5 thresholds control homeostasis and function of innate lymphoid cells

    Get PDF
    Innate lymphoid cells (ILCs) patrol environmental interfaces to defend against infection and protect barrier integrity. Using a genetic tuning model, we demonstrate that the signal-dependent transcription factor (TF) STAT5 is critical for accumulation of all known ILC subsets in mice and reveal a hierarchy of STAT5 dependency for populating lymphoid and nonlymphoid tissues. We apply transcriptome and genomic distribution analyses to define a STAT5 gene signature in natural killer (NK) cells, the prototypical ILC subset, and provide a systems-based molecular rationale for its key functions downstream of IL-15. We also uncover surprising features of STAT5 behavior, most notably the wholesale redistribution that occurs when NK cells shift from tonic signaling to acute cytokine-driven signaling, and genome-wide coordination with T-bet, another key TF in ILC biology. Collectively, our data position STAT5 as a central node in the TF network that instructs ILC development, homeostasis, and function and provide mechanistic insights on how it works at cellular and molecular levels

    A whole-genome assembly of the domestic cow, Bos taurus

    Get PDF
    Background: The genome of the domestic cow, Bos taurus, was sequenced using a mixture of hierarchical and whole-genome shotgun sequencing methods. Results: We have assembled the 35 million sequence reads and applied a variety of assembly improvement techniques, creating an assembly of 2.86 billion base pairs that has multiple improvements over previous assemblies: it is more complete, covering more of the genome; thousands of gaps have been closed; many erroneous inversions, deletions, and translocations have been corrected; and thousands of single-nucleotide errors have been corrected. Our evaluation using independent metrics demonstrates that the resulting assembly is substantially more accurate and complete than alternative versions. Conclusions: By using independent mapping data and conserved synteny between the cow and human genomes, we were able to construct an assembly with excellent large-scale contiguity in which a large majority (approximately 91%) of the genome has been placed onto the 30 B. taurus chromosomes. We constructed a new cow-human synteny map that expands upon previous maps. We also identified for the first time a portion of the B. taurus Y chromosome. © 2009 Zimin et al.; licensee BioMed Central Ltd

    A hillslope-scale aquifer-model to determine past agricultural legacy and future nitrate concentrations in rivers

    Get PDF
    The long-term fate of agricultural nitrate depends on rapid subsurface transfer, denitrification and storage in aquifers. Quantifying these processes remains an issue due to time varying subsurface contribution, unknown aquifer storage and heterogeneous denitrification potential. Here, we develop a parsimonious modelling approach that uses long-term discharge and river nitrate concentration time-series combined with groundwater age data determined from chlorofluorocarbons in springs and boreholes. To leverage their informational content, we use a Boussinesq-type equivalent hillslope model to capture the dynamics of aquifer flows and evolving surface and subsurface contribution to rivers. Nitrate transport was modelled with a depth-resolved high-order finite-difference method and denitrification by a first-order law. We applied the method to three heavily nitrate loaded catchments of a crystalline temperate region of France (Brittany). We found that mean water transit time ranged 10–32 years and Damköhler ratio (transit time/denitrification time) ranged 0.12–0.55, leading to limited denitrification in the aquifer (10–20%). The long-term trajectory of nitrate concentration in rivers appears determined by flows stratification in the aquifer. The results suggest that autotrophic denitrification is controlled by the accessibility of reduced minerals which occurs at the base of the aquifer where flows decrease. One interpretation is that denitrification might be an interfacial process in zones that are weathered enough to transmit flows and not too weathered to have remaining accessible reduced minerals. Consequently, denitrification would not be controlled by the total aquifer volume and related mean transit time but by the proximity of the active weathered interface with the water table. This should be confirmed by complementary studies to which the developed methodology might be further deployed

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    ccTSA: A Coverage-Centric Threaded Sequence Assembler

    Get PDF
    De novo sequencing, a process to find the whole genome or the regions of a species without references, requires much higher computational power compared to mapped sequencing with references. The advent and continuous evolution of next-generation sequencing technologies further stress the demands of high-throughput processing of myriads of short DNA fragments. Recently announced sequence assemblers, such as Velvet, SOAPdenovo, and ABySS, all exploit parallelism to meet these computational demands since contemporary computer systems primarily rely on scaling the number of computing cores to improve performance. However, most of them are not tailored to exploit the full potential of these systems, leading to suboptimal performance. In this paper, we present ccTSA, a parallel sequence assembler that utilizes coverage to prune k-mers, find preferred edges, and resolve conflicts in preferred edges between k-mers. We minimize computation dependencies between threads to effectively parallelize k-mer processing. We also judiciously allocate and reuse memory space in order to lower memory usage and further improve sequencing speed. The results of ccTSA are compelling such that it runs several times faster than other assemblers while providing comparable quality values such as N50

    Efficient counting of k-mers in DNA sequences using a bloom filter

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Counting <it>k</it>-mers (substrings of length <it>k </it>in DNA sequence data) is an essential component of many methods in bioinformatics, including for genome and transcriptome assembly, for metagenomic sequencing, and for error correction of sequence reads. Although simple in principle, counting <it>k</it>-mers in large modern sequence data sets can easily overwhelm the memory capacity of standard computers. In current data sets, a large fraction-often more than 50%-of the storage capacity may be spent on storing <it>k</it>-mers that contain sequencing errors and which are typically observed only a single time in the data. These singleton <it>k</it>-mers are uninformative for many algorithms without some kind of error correction.</p> <p>Results</p> <p>We present a new method that identifies all the <it>k</it>-mers that occur more than once in a DNA sequence data set. Our method does this using a Bloom filter, a probabilistic data structure that stores all the observed <it>k</it>-mers implicitly in memory with greatly reduced memory requirements. We then make a second sweep through the data to provide exact counts of all nonunique <it>k</it>-mers. For example data sets, we report up to 50% savings in memory usage compared to current software, with modest costs in computational speed. This approach may reduce memory requirements for any algorithm that starts by counting <it>k</it>-mers in sequence data with errors.</p> <p>Conclusions</p> <p>A reference implementation for this methodology, BFCounter, is written in C++ and is GPL licensed. It is available for free download at <url>http://pritch.bsd.uchicago.edu/bfcounter.html</url></p

    Human domination of the global water cycle absent from depictions and perceptions

    Get PDF
    International audienceHuman water use, climate change and land conversion have created a water crisis for billions of individuals and many ecosystems worldwide. Global water stocks and fluxes are estimated empirically and with computer models, but this information is conveyed to policymakers and researchers through water cycle diagrams. Here we compiled a synthesis of the global water cycle, which we compared with 464 water cycle diagrams from around the world. Although human freshwater appropriation now equals half of global river discharge, only 15% of the water cycle diagrams depicted human interaction with water. Only 2% of the diagrams showed climate change or water pollution—two of the central causes of the global water crisis—which effectively conveys a false sense of water security. A single catchment was depicted in 95% of the diagrams, which precludes the representation of teleconnections such as ocean–land interactions and continental moisture recycling. These inaccuracies correspond with specific dimensions of water mismanagement, which suggest that flaws in water diagrams reflect and reinforce the misunderstanding of global hydrology by policymakers, researchers and the public. Correct depictions of the water cycle will not solve the global water crisis, but reconceiving this symbol is an important step towards equitable water governance, sustainable development and planetary thinking in the Anthropocene
    corecore