53,560 research outputs found

    Mitochondrial Molecular Adaptations and Life History Strategies Coevolve in Plants

    Get PDF
    Messenger RNA secondary structure prevents mutations at functionally important sites. Mutations at exposed sites would cause micro-adaptations, niche-specialization, and therefore, can be thought to promote K-strategists. Exposing, rather than protecting, conserved sites, is also potentially adaptive because they probably promote macro-adaptive changes. This presumably fits r-strategists: their population dynamics tolerate decreased survival. We found that helix-forming tendencies are greater at evolutionary conserved sites of plant mitochondrial mRNAs than at evolutionary variable sites in a majority (73%) of species–gene combinations. K-strategists preferentially protect conserved sites in short genes, r-strategists protect them most in larger genes. This adaptive scenario resembles our earlier findings in chloroplast genes. Protection levels at various codon positions also display disparity with respect to life history strategies of the plants. Conserved site protection increases overall mRNA folding stabilities for some genes, while decreases it for some others. This contrast exists between homologous genes of r- and K- strategists. Such compensating interactions between variability, mRNA size, codon position, and secondary structure factors within r- and K-strategists are most likely, molecular adaptations of plants belonging to the two extreme life history strategies. Our results suggest coevolution between molecular and ecological adaptive strategies

    Wind tunnel tests on a tail-less swept wing span-distributed cargo aircraft configuration

    Get PDF
    The configuration consisted of a 30 deg -swept, untapered, untwisted wing utilizing a low-moment cambered airfoil of 20 percent streamwise thickness designed for low wave drag at M = 0.6, C sub L = 0.4. The tests covered a range of Mach numbers 0.3 to 0.725 and chord Reynolds number 1,100,000 to 2,040,000, angles of attack up to model buffet and sideslip angles + or - 4 deg. Configuration build up, wing pod filleting, airfoil modification and trailing edge control deflection effects were briefly investigated. Three wing tip vertical tail designs were also tested. Wing body filleting and a simple airfoil modification both produced increments to maximum lift/drag ratio. Addition of pods eliminated pitch instability of the basic wing. While the magnitude of these benefits probably was Reynolds number sensitive, they underline the potential for improving the aerodynamics of the present configuration. The cruise parameter (product of Mach number and lift/drag ratio) attained a maximum close to the airfoil design point. The configuration was found to be positively stable with normal control effectiveness about all three axes in the Mach number and C sub L range of interest

    Two Modes of Solid State Nucleation - Ferrites, Martensites and Isothermal Transformation Curves

    Get PDF
    When a crystalline solid such as iron is cooled across a structural transition, its final microstructure depends sensitively on the cooling rate. For instance, an adiabatic cooling across the transition results in an equilibrium `ferrite', while a rapid cooling gives rise to a metastable twinned `martensite'. There exists no theoretical framework to understand the dynamics and conditions under which both these microstructures obtain. Existing theories of martensite dynamics describe this transformation in terms of elastic strain, without any explanation for the occurence of the ferrite. Here we provide evidence for the crucial role played by non-elastic variables, {\it viz.}, dynamically generated interfacial defects. A molecular dynamics (MD) simulation of a model 2-dimensional (2d) solid-state transformation reveals two distinct modes of nucleation depending on the temperature of quench. At high temperatures, defects generated at the nucleation front relax quickly giving rise to an isotropically growing `ferrite'. At low temperatures, the defects relax extremely slowly, forcing a coordinated motion of atoms along specific directions. This results in a twinned critical nucleus which grows rapidly at speeds comparable to that of sound. Based on our MD results, we propose a solid-state nucleation theory involving the elastic strain and non-elastic defects, which successfully describes the transformation to both a ferrite and a martensite. Our work provides useful insights on how to formulate a general dynamics of solid state transformations.Comment: 3 pages, 4 B/W + 2 color figure

    Periodic variations of precipitation in the tropical Atlantic Ocean

    Get PDF
    Statistical analysis of the satellite-borne Electrically Scanning Microwave Radiometer data in the tropical Atlantic region reveals that the rainfall near local noon is higher both in frequency of occurrence and intensity than the rainfall in the same area near local midnight. Another striking feature that stands out from the analysis is an oscillation with a period of 3.3. days in rainfall occurrence and intensity. This periodicty is consistent with easterly waves traveling from the African continent to the region under study

    New features of global climatology revealed by satellite-derived oceanic rainfall maps

    Get PDF
    Quantitative rainfall maps over the oceanic areas of the globe were derived from the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR) data. Analysis of satellite derived oceanic rainfall maps reveal certain distinctive characteristics of global patterns for the years 1973-74. The main ones are (1) the forking of the Intertropical Convergence Zone in the Pacific, (2) a previously unrecognized rain area in the South Atlantic, (3) the bimodal behavior of rainbelts in the Indian Ocean and (4) the large interannual variability in oceanic rainfall. These features are discussed

    Transport in Luttinger Liquids

    Full text link
    We give a brief introduction to Luttinger liquids and to the phenomena of electronic transport or conductance in quantum wires. We explain why the subject of transport in Luttinger liquids is relevant and fascinating and review some important results on tunneling through barriers in a one-dimensional quantum wire and the phenomena of persistent currents in mesoscopic rings. We give a brief description of our own work on transport through doubly-crossed Luttinger liquids and transport in the Schulz-Shastry exactly solvable Luttinger-like model.Comment: Latex file, 15 pages, four eps figure

    Theory of Hysteresis Loop in Ferromagnets

    Get PDF
    We consider three mechanisms of hysteresis phenomena in alternating magnetic field: the domain wall motion in a random medium, the nucleation and the retardation of magnetization due to slow (critical) fluctuations. We construct quantitative theory for all these processes. The hysteresis is characterized by two dynamic threshold fields, by coercive field and by the so-called reversal field. Their ratios to the static threshold field is shown to be function of two dimensionless variables constituted from the frequency and amplitude of the ac field as well as from some characteristics of the magnet. The area and the shape of the hysteresis loop are found. We consider different limiting cases in which power dependencies are valid. Numerical simulations show the domain wall formation and propagation and confirm the main theoretical predictions. Theory is compared with available experimental data.Comment: RevTex, 13 pages, 8 figures (PostScript), acknowledgements adde
    corecore