121 research outputs found
Comparative simulation study of colloidal gels and glasses
Using computer simulations, we identify the mechanisms causing aggregation
and structural arrest of colloidal suspensions interacting with a short-ranged
attraction at moderate and high densities. Two different non-ergodicity
transitions are observed. As the density is increased, a glass transition takes
place, driven by excluded volume effects. In contrast, at moderate densities,
gelation is approached as the strength of the attraction increases. At high
density and interaction strength, both transitions merge, and a logarithmic
decay in the correlation function is observed. All of these features are
correctly predicted by mode coupling theory
Theory and simulation of gelation, arrest and yielding in attracting colloids
We present some recent theory and simulation results addressing the phenomena
of colloidal gelation at both high and low volume fractions, in the presence of
short-range attractive interactions. We discuss the ability of mode-coupling
theory and its adaptations to address situations with strong heterogeneity in
density and/or dynamics. We include a discussion of the effect of attractions
on the shear-thinning and yield behaviour under flow.Comment: 17 pages, 6 figure
Generally covariant state-dependent diffusion
Statistical invariance of Wiener increments under SO(n) rotations provides a
notion of gauge transformation of state-dependent Brownian motion. We show that
the stochastic dynamics of non gauge-invariant systems is not unambiguously
defined. They typically do not relax to equilibrium steady states even in the
absence of extenal forces. Assuming both coordinate covariance and gauge
invariance, we derive a second-order Langevin equation with state-dependent
diffusion matrix and vanishing environmental forces. It differs from previous
proposals but nevertheless entails the Einstein relation, a Maxwellian
conditional steady state for the velocities, and the equipartition theorem. The
over-damping limit leads to a stochastic differential equation in state space
that cannot be interpreted as a pure differential (Ito, Stratonovich or else).
At odds with the latter interpretations, the corresponding Fokker-Planck
equation admits an equilibrium steady state; a detailed comparison with other
theories of state-dependent diffusion is carried out. We propose this as a
theory of diffusion in a heat bath with varying temperature. Besides
equilibrium, a crucial experimental signature is the non-uniform steady spatial
distribution.Comment: 24 page
Simulation study of Non-ergodicity Transitions: Gelation in Colloidal Systems with Short Range Attractions
Computer simulations were used to study the gel transition occurring in
colloidal systems with short range attractions. A colloid-polymer mixture was
modelled and the results were compared with mode coupling theory expectations
and with the results for other systems (hard spheres and Lennard Jones). The
self-intermediate scattering function and the mean squared displacement were
used as the main dynamical quantities. Two different colloid packing fractions
have been studied. For the lower packing fraction, -scaling holds and
the wave-vector analysis of the correlation function shows that gelation is a
regular non-ergodicity transition within MCT. The leading mechanism for this
novel non-ergodicity transition is identified as bond formation caused by the
short range attraction. The time scale and diffusion coefficient also show
qualitatively the expected behaviour, although different exponents are found
for the power-law divergences of these two quantities. The non-Gaussian
parameter was also studied and very large correction to Gaussian behaviour
found. The system with higher colloid packing fraction shows indications of a
nearby high-order singularity, causing -scaling to fail, but the
general expectations for non-ergodicity transitions still hold.Comment: 13 pages, 15 figure
Effective forces in colloidal mixtures: from depletion attraction to accumulation repulsion
Computer simulations and theory are used to systematically investigate how
the effective force between two big colloidal spheres in a sea of small spheres
depends on the basic (big-small and small-small) interactions. The latter are
modeled as hard-core pair potentials with a Yukawa tail which can be both
repulsive or attractive. For a repulsive small-small interaction, the effective
force follows the trends as predicted by a mapping onto an effective
non-additive hard-core mixture: both a depletion attraction and an accumulation
repulsion caused by small spheres adsorbing onto the big ones can be obtained
depending on the sign of the big-small interaction. For repulsive big-small
interactions, the effect of adding a small-small attraction also follows the
trends predicted by the mapping. But a more subtle ``repulsion through
attraction'' effect arises when both big-small and small-small attractions
occur: upon increasing the strength of the small-small interaction, the
effective potential becomes more repulsive. We have further tested several
theoretical methods against our computer simulations: The superposition
approximation works best for an added big-small repulsion, and breaks down for
a strong big-small attraction, while density functional theory is very accurate
for any big-small interaction when the small particles are pure hard-spheres.
The theoretical methods perform most poorly for small-small attractions.Comment: submitted to PRE; New version includes an important quantitative
correction to several of the simulations. The main conclusions remain
unchanged thoug
Usefulness of bone turnover markers as predictors of mortality risk, disease progression and skeletal-related events appearance in patients with prostate cancer with bone metastases following treatment with zoledronic acid: TUGAMO study
Owing to the limited validity of clinical data on the treatment of prostate cancer (PCa) and bone metastases,
biochemical markers are a promising tool for predicting survival, disease progression and skeletal-related events (SREs) in these
patients. The aim of this study was to evaluate the predictive capacity of biochemical markers of bone turnover for mortality risk,
disease progression and SREs in patients with PCa and bone metastases undergoing treatment with zoledronic acid (ZA).
Methods: This was an observational, prospective and multicenter study in which ninety-eight patients were included. Patients
were treated with ZA (4mg every 4 weeks for 18 months). Data were collected at baseline and 3, 6, 9, 12, 15 and 18 months after
the beginning of treatment. Serum levels of bone alkaline phosphtase (BALP), aminoterminal propeptide of procollagen type I
(P1NP) and beta-isomer of carboxiterminal telopeptide of collagen I (b-CTX) were analysed at all points in the study. Data on
disease progression, SREs development and survival were recorded.
Results: Cox regression models with clinical data and bone markers showed that the levels of the three markers studied were
predictive of survival time, with b-CTX being especially powerful, in which a lack of normalisation in visit 1 (3 months after the
beginning of treatment) showed a 6.3-times more risk for death than in normalised patients. Levels of these markers were also
predictive for SREs, although in this case BALP and P1NP proved to be better predictors. We did not find any relationship
between bone markers and disease progression.
Conclusion: In patients with PCa and bone metastases treated with ZA, b-CTX and P1NP can be considered suitable predictors for
mortality risk, while BALP and P1NP are appropriate for SREs. The levels of these biomarkers 3 months after the beginning of
treatment are especially importantThis study was supported by Novartis Oncology Spai
Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment
The Deep Underground Neutrino Experiment (DUNE) will produce world-leading
neutrino oscillation measurements over the lifetime of the experiment. In this
work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in
the neutrino sector, and to resolve the mass ordering, for exposures of up to
100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed
uncertainties on the flux prediction, the neutrino interaction model, and
detector effects. We demonstrate that DUNE will be able to unambiguously
resolve the neutrino mass ordering at a 3 (5) level, with a 66
(100) kt-MW-yr far detector exposure, and has the ability to make strong
statements at significantly shorter exposures depending on the true value of
other oscillation parameters. We also show that DUNE has the potential to make
a robust measurement of CPV at a 3 level with a 100 kt-MW-yr exposure
for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2.
Additionally, the dependence of DUNE's sensitivity on the exposure taken in
neutrino-enhanced and antineutrino-enhanced running is discussed. An equal
fraction of exposure taken in each beam mode is found to be close to optimal
when considered over the entire space of interest
Snowmass Neutrino Frontier: DUNE Physics Summary
The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of ÎŽCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter
A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE
This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model
Snowmass Neutrino Frontier: DUNE Physics Summary
The Deep Underground Neutrino Experiment (DUNE) is a next-generation
long-baseline neutrino oscillation experiment with a primary physics goal of
observing neutrino and antineutrino oscillation patterns to precisely measure
the parameters governing long-baseline neutrino oscillation in a single
experiment, and to test the three-flavor paradigm. DUNE's design has been
developed by a large, international collaboration of scientists and engineers
to have unique capability to measure neutrino oscillation as a function of
energy in a broadband beam, to resolve degeneracy among oscillation parameters,
and to control systematic uncertainty using the exquisite imaging capability of
massive LArTPC far detector modules and an argon-based near detector. DUNE's
neutrino oscillation measurements will unambiguously resolve the neutrino mass
ordering and provide the sensitivity to discover CP violation in neutrinos for
a wide range of possible values of . DUNE is also uniquely
sensitive to electron neutrinos from a galactic supernova burst, and to a broad
range of physics beyond the Standard Model (BSM), including nucleon decays.
DUNE is anticipated to begin collecting physics data with Phase I, an initial
experiment configuration consisting of two far detector modules and a minimal
suite of near detector components, with a 1.2 MW proton beam. To realize its
extensive, world-leading physics potential requires the full scope of DUNE be
completed in Phase II. The three Phase II upgrades are all necessary to achieve
DUNE's physics goals: (1) addition of far detector modules three and four for a
total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power
from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary
muon spectrometer with a magnetized, high-pressure gaseous argon TPC and
calorimeter.Comment: Contribution to Snowmass 202
- âŠ