1,280 research outputs found
Spacetime torsion and parity violation: a gauge invariant formulation
The possibility of parity violation through spacetime torsion has been
explored in a scenario containing fields with different spins. Taking the
Kalb-Ramond field as the source of torsion, an explicitly parity violating
gauge invariant theory has been constructed by extending the KR
field with a Chern-Simons term.Comment: 4 pages, RevTe
Robust quantum-network memory using decoherence-protected subspaces of nuclear spins
The realization of a network of quantum registers is an outstanding challenge
in quantum science and technology. We experimentally investigate a network node
that consists of a single nitrogen-vacancy (NV) center electronic spin
hyperfine-coupled to nearby nuclear spins. We demonstrate individual control
and readout of five nuclear spin qubits within one node. We then characterize
the storage of quantum superpositions in individual nuclear spins under
repeated application of a probabilistic optical inter-node entangling protocol.
We find that the storage fidelity is limited by dephasing during the electronic
spin reset after failed attempts. By encoding quantum states into a
decoherence-protected subspace of two nuclear spins we show that quantum
coherence can be maintained for over 1000 repetitions of the remote entangling
protocol. These results and insights pave the way towards remote entanglement
purification and the realisation of a quantum repeater using NV center quantum
network nodes
The finiteness of the four dimensional antisymmetric tensor field model in a curved background
A renormalizable rigid supersymmetry for the four dimensional antisymmetric
tensor field model in a curved space-time background is constructed. A closed
algebra between the BRS and the supersymmetry operators is only realizable if
the vector parameter of the supersymmetry is a covariantly constant vector
field. This also guarantees that the corresponding transformations lead to a
genuine symmetry of the model. The proof of the ultraviolet finiteness to all
orders of perturbation theory is performed in a pure algebraic manner by using
the rigid supersymmetry.Comment: 23 page
String Fields and the Standard Model
The Cremmer-Scherk mechanism is generalised in a non-Abelian context. In the
presence of the Higgs scalars of the standard model it is argued that fields
arising from the low energy effective string action may contribute to the mass
generation of the observed vector bosons that mediate the electroweak
interactions and that future analyses of experimental data should consider the
possibility of string induced radiative corrections to the Weinberg angle
coming from physics beyond the standard model.Comment: 4 pages, LATEX, no figure
Imaging FlowCytobot modified for high throughput by in-line acoustic focusing of sample particles
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography: Methods 15 (2017): 867–874, doi:10.1002/lom3.10205.Imaging FlowCytobot, a submersible instrument that measures optical properties and captures images of nano- and microplankton-sized particles, has proved useful in plankton studies, but its sampling rate is limited by the ability of hydrodynamic focusing to accurately position flowing sample particles. We show that IFCB's sampling rate can be increased at least several-fold by implementing in-line acoustic focusing upstream of the flow cell. Particles are forced to the center of flow by acoustic standing waves created by a piezo-electric transducer bonded to the sample capillary and driven at the appropriate frequency. With the particles of interest confined to the center of the sample flow, the increased size of the sample core that accompanies increased sample flow rate no longer degrades image and signal quality as it otherwise would. Temperature affects the optimum frequency (through its effect on the speed of sound in water), so a relationship between sample temperature and optimum frequency for acoustic focusing was determined and utilized to control the transducer. The modified instrument's performance was evaluated through analyses of artificial particles, phytoplankton cultures, and natural seawater samples and through deployments in coastal waters. The results show that large cells, especially dinoflagellates, are acoustically focused extremely effectively (which could enable, for example, > 10-fold increased sampling rate of harmful algal bloom species, if smaller cells are ignored), while for nearly all cell types typically monitored by IFCB, threefold faster data accumulation was achieved without any compromises. Further increases are possible with more sophisticated software and/or a faster camera.NSF Grant Numbers: OCE-1130140 , OCE-113113
Mass generation for non-Abelian antisymmetric tensor fields in a three-dimensional space-time
Starting from a recently proposed Abelian topological model in (2+1)
dimensions, which involve the Kalb-Ramond two form field, we study a
non-Abelian generalization of the model. An obstruction for generalization is
detected. However we show that the goal is achieved if we introduce a vectorial
auxiliary field. Consequently, a model is proposed, exhibiting a non-Abelian
topological mass generation mechanism in D=3, that provides mass for the
Kalb-Ramond field. The covariant quantization of this model requires ghosts for
ghosts. Therefore in order to quantize the theory we construct a complete set
of BRST and anti-BRST equations using the horizontality condition.Comment: 8 pages. To appear in Physical Review
Fractional Statistics in Three Dimensions: Compact Maxwell-Higgs System
We show that a (3+1)-dimensional system composed of an open magnetic vortex
and an electrical point charge exhibits the phenomenon of Fermi-Bose
transmutation. In order to provide the physical realization of this system we
focus on the lattice compact scalar electrodynamics whose topological
excitations are open Nielsen-Olesen strings with magnetic monopoles attached at
their ends.Comment: 8 page
In situ mercury stabilization
BNL Royalty Project Internal Status Report. The funds from the allotment of royalty income were used to experimentally explore feasibility of related, potential new techniques based on the Environmental Sciences Department successful technology licensed for the ex situ treatment of mercury. Specifically, this work is exploring the concept of using Sulfur Polymer Cement (SPC) in an in situ application to stabilize and/or remove mercury (Hg) from surficial soil. Patent disclosure forms have been filed for this process. Soil was artificially spiked with 500 ppm Hg and a series of experiments were set up in which SPC rods were placed in the center of a mass of this soil. Some experiments were conducted at 20 C and others at 50 C. After times ranging from 11 to 24 days, these experiments were opened, photographed and the soil was sampled from discrete locations in the containers. The soil and SPC samples were analyzed for Fe and Hg by x-ray fluorescence. The Hg profile in the soil was significantly altered, with concentrations along the outer edge of the soil reduced by as much as 80% from the starting concentration. Conversely, closer to the treatment rod containing SPC, concentrations of Hg were significantly increased over the original concentration. Preliminary results for elevated temperature sample are shown graphically in Figure 2. Apparently the Hg had migrated toward the SPC and reacted with sulfur to form Hg S. This appears to be a reaction between gaseous phases of both S and Hg, with Hg having a greater vapor pressure. The concentration of low solubility HgS (i.e., low leaching properties) developed within 11 days at 50 C and 21 days at 20 C, confirming the potential of this concept
Geometric Laws of Vortex Quantum Tunneling
In the semiclassical domain the exponent of vortex quantum tunneling is
dominated by a volume which is associated with the path the vortex line traces
out during its escape from the metastable well. We explicitly show the
influence of geometrical quantities on this volume by describing point vortex
motion in the presence of an ellipse. It is argued that for the semiclassical
description to hold the introduction of an additional geometric constraint, the
distance of closest approach, is required. This constraint implies that the
semiclassical description of vortex nucleation by tunneling at a boundary is in
general not possible. Geometry dependence of the tunneling volume provides a
means to verify experimental observation of vortex quantum tunneling in the
superfluid Helium II.Comment: 4 pages, 2 figures, revised version to appear in Phys. Rev.
- …