119 research outputs found

    Combining the Δ--self-consistent-field and gw methods for predicting core electron binding energies in periodic solids

    Get PDF
    For the computational prediction of core electron binding energies in solids, two distinct kinds of modeling strategies have been pursued: the Δ-Self-Consistent-Field method based on density functional theory (DFT), and the GW method. In this study, we examine the formal relationship between these two approaches and establish a link between them. The link arises from the equivalence, in DFT, between the total energy difference result for the first ionization energy, and the eigenvalue of the highest occupied state, in the limit of infinite supercell size. This link allows us to introduce a new formalism, which highlights how in DFT─even if the total energy difference method is used to calculate core electron binding energies─the accuracy of the results still implicitly depends on the accuracy of the eigenvalue at the valence band maximum in insulators, or at the Fermi level in metals. We examine whether incorporating a quasiparticle correction for this eigenvalue from GW theory improves the accuracy of the calculated core electron binding energies, and find that the inclusion of vertex corrections is required for achieving quantitative agreement with experiment

    Electrons surf phason waves in moiré bilayers

    Get PDF
    We investigate the effect of thermal fluctuations on the atomic and electronic structure of a twisted MoSe2/WSe2 heterobilayer using a combination of classical molecular dynamics and ab initio density functional theory calculations. Our calculations reveal that thermally excited phason modes give rise to an almost rigid motion of the moiré lattice. Electrons and holes in low-energy states are localized in specific stacking regions of the moiré unit cell and follow the thermal motion of these regions. In other words, charge carriers surf phason waves that are excited at finite temperatures. We also show that such surfing survives in the presence of a substrate and frozen potential. This effect has potential implications for the design of charge and exciton transport devices based on moiré materials

    Electron-phonon coupling and hot electron thermalization in titanium nitride

    Get PDF
    We have studied the thermalization of hot carriers in both pristine and defective titanium nitride (TiN) using a two-temperature model. All parameters of this model, including the electron-phonon coupling parameter, were obtained from rst-principles density-functional theory calculations. The virtual crystal approximation was used to describe defective systems. We nd that thermalization of hot carriers occurs on much faster time scales than in gold as a consequence of the signi cantly stronger electronphonon coupling in TiN. Speci cally, the largest thermalization times, on the order of 200 femtoseconds, are found in TiN with nitrogen vacancies for electron temperatures around 4000 K

    Accelerating GW calculations through machine learned dielectric matrices

    Get PDF
    The GW approach produces highly accurate quasiparticle energies, but its application to large systems is computationally challenging due to the difficulty in computing the inverse dielectric matrix. To address this challenge, we develop a machine learning approach to efficiently predict density–density response functions (DDRF) in materials. An atomic decomposition of the DDRF is introduced, as well as the neighborhood density–matrix descriptor, both of which transform in the same way under rotations. The resulting DDRFs are then used to evaluate quasiparticle energies via the GW approach. To assess the accuracy of this method, we apply it to hydrogenated silicon clusters and find that it reliably reproduces HOMO–LUMO gaps and quasiparticle energy levels. The accuracy of the predictions deteriorates when the approach is applied to larger clusters than those in the training set. These advances pave the way for GW calculations of complex systems, such as disordered materials, liquids, interfaces, and nanoparticles

    Electronic structure of monolayer and bilayer black phosphorus with charged defects

    Get PDF
    We use an atomistic approach to study the electronic properties of monolayer and bilayer black phosphorus in the vicinity of a charged defect. In particular, we combine screened defect potentials obtained from first-principles linear response theory with large-scale tight-binding simulations to calculate the wave functions and energies of bound acceptor and donor states. As a consequence of the anisotropic band structure, the defect states in these systems form distorted hydrogenic orbitals with a different ordering from that in isotropic materials. For the monolayer, we study the dependence of the binding energies of charged adsorbates on the defect height and the dielectric constant of a substrate in an experimental setup. We also compare our results with an anisotropic effective mass model and find quantitative and qualitative differences when the charged defect is close to the black phosphorus or when the screening from the substrate is weak. For the bilayer, we compare results for charged adsorbates and charged intercalants and find that intercalants induce more prominent secondary peaks in the local density of states because they interact strongly with electronic states on both layers. These insights can be directly tested in scanning tunneling spectroscopy measurements and enable a detailed understanding of the role of Coulomb impurities in electronic devices

    Optical properties of charged defects in monolayer MoSâ‚‚

    Get PDF
    We present theoretical calculations of the optical spectrum of monolayer MoS2 with a charged defect. In particular, we solve the Bethe–Salpeter equation based on an atomistic tight-binding model of the MoS2 electronic structure which allows calculations for large supercells. The defect is modelled as a point charge whose potential is screened by the MoS2 electrons. We find that the defect gives rise to new peaks in the optical spectrum approximately 100–200 meV below the first free exciton peak. These peaks arise from transitions involving in-gap bound states induced by the charged defect. Our findings are in good agreement with experimental measurements

    Dielectric engineering of hot carrier generation by quantized plasmons in embedded silver nanoparticles

    Get PDF
    Understanding and controlling properties of plasmon-induced hot carriers is a key step toward next-generation photovoltaic and photocatalytic devices. Here, we uncover a route to engineering hot-carrier generation rates of silver nanoparticles by designed embedding in dielectric host materials. Extending our recently established quantum-mechanical approach to describe the decay of quantized plasmons into hot carriers we capture both external screening by the nanoparticle environment and internal screening by silver d-electrons through an effective electron–electron interaction. We find that hot-carrier generation can be maximized by engineering the dielectric host material such that the energy of the localized surface plasmon coincides with the highest value of the nanoparticle joint density of states. This allows us to uncover a path to control the energy of the carriers and the amount produced, for example, a large number of relatively low-energy carriers are obtained by embedding in strongly screening environments

    Flat band properties of twisted transition metal dichalcogenide homo- and heterobilayers of MoS2, MoSe2, WS2 and WSe2

    Get PDF
    Twisted bilayers of two-dimensional materials, such as twisted bilayer graphene, often feature flat electronic bands that enable the observation of electron correlation effects. In this work, we study the electronic structure of twisted transition metal dichalcogenide (TMD) homo- and heterobilayers that are obtained by combining MoS2_2, WS2_2, MoSe2_2 and WSe2_2 monolayers, and show how flat band properties depend on the chemical composition of the bilayer as well as its twist angle. We determine the relaxed atomic structure of the twisted bilayers using classical force fields and calculate the electronic band structure using a tight-binding model parametrized from first-principles density-functional theory. We find that the highest valence bands in these systems can derive either from Γ\Gamma-point or KK/K′K'-point states of the constituent monolayers. For homobilayers, the two highest valence bands are composed of monolayer Γ\Gamma-point states, exhibit a graphene-like dispersion and become flat as the twist angle is reduced. The situation is more complicated for heterobilayers where the ordering of Γ\Gamma-derived and KK/K′K'-derived states depends both on the material composition and also the twist angle. In all systems, qualitatively different band structures are obtained when atomic relaxations are neglected
    • …
    corecore