8,522 research outputs found

    All-optical production of 7Li Bose-Einstein condensation using Feshbach resonances

    Full text link
    We show an all-optical method of making 7Li condensate using tunability of the scattering length in the proximity of a Feshbach resonance. We report the observation of two new Feshbach resonances on |F = 1;mF = 0> state. The narrow (broad) resonance of 7 G (34 G) width is detected at 831 +- 4 G (884 +4 -13 G). Position of the scattering length zero crossing between the resonances is found at 836 +- 4 G. The broad resonance is shown to be favorable for run away evaporation which we perform in a crossed-beam optical dipole trap. Starting directly form the phase space density of a magneto-optical trap we observe a Bose-Einstein condensation threshold in less than 3 s of forced evaporation.Comment: 5 pages, 5 figure

    Theory of elastic interaction between colloidal particles in the nematic cell in the presence of the external electric or magnetic field

    Full text link
    The Green function method developed in Ref.[S. B. Chernyshuk and B. I. Lev, Phys. Rev. E \textbf{81}, 041707 (2010)] is used to describe elastic interactions between axially symmetric colloidal particles in the nematic cell in the presence of the external electric or magnetic field. General formulas for dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interactions in the homeotropic and planar nematic cells with parallel and perpendicular field orientations are obtained. A set of new results has been predicted: 1) \textit{Deconfinement effect} for dipole particles in the homeotropic nematic cell with negative dielectric anisotropy Δϵ<0\Delta\epsilon<0 and perpendicular to the cell electric field, when electric field is approaching it's Frederiks threshold value E⇒EcE\Rightarrow E_{c}. This means cancellation of the confinement effect found in Ref. [M.Vilfan et al. Phys.Rev.Lett. {\bf 101}, 237801, (2008)] for dipole particles near the Frederiks transition while it remains for quadrupole particles. 2) New effect of \textit{attraction and stabilization} of the particles along the electric field parallel to the cell planes in the homeotropic nematic cell with Δϵ<0\Delta\epsilon<0 . The minimun distance between two particles depends on the strength of the field and can be ordinary for . 3) Attraction and repulsion zones for all elastic interactions are changed dramatically under the action of the external field.Comment: 15 pages, 17 figure

    Absence of dynamical localization in interacting driven systems

    Full text link
    Using a numerically exact method we study the stability of dynamical localization to the addition of interactions in a periodically driven isolated quantum system which conserves only the total number of particles. We find that while even infinitesimally small interactions destroy dynamical localization, for weak interactions density transport is significantly suppressed and is asymptotically diffusive, with a diffusion coefficient proportional to the interaction strength. For systems tuned away from the dynamical localization point, even slightly, transport is dramatically enhanced and within the largest accessible systems sizes a diffusive regime is only pronounced for sufficiently small detunings.Comment: Scipost resubmission. 14 pages, 4 figures. Changes to the figures. Corrects a few typo
    • …
    corecore