22 research outputs found

    Non-equilibrium spin noise spectroscopy of a single quantum dot operating at fiber telecommunication wavelengths

    Get PDF
    We report on the spin and occupation noise of a single, positively charged (InGa)As quantum dot emitting photons in the telecommunication C-band. The spin noise spectroscopy measurements are carried out at a temperature of 4.2 K in dependence on intensity and detuning in the regime beyond thermal equilibrium. The spin noise spectra yield in combination with an elaborate theoretical model the hole-spin relaxation time of the positively charged quantum dot and the Auger recombination and the electron-spin relaxation time of the trion state. The extracted Auger recombination time of this quantum dot emitting at 1.55 μm is comparable to the typical Auger recombination times on the order of a few μs measured in traditionally grown InAs/GaAs quantum dots emitting at around 900 nm

    Comprehensive molecular landscape of cetuximab resistance in head and neck cancer cell lines

    Get PDF
    Cetuximab is the sole anti-EGFR monoclonal antibody that is FDA approved to treat head and neck squamous cell carcinoma (HNSCC). However, no predictive biomarkers of cetuximab response are known for HNSCC. Herein, we address the molecular mechanisms underlying cetuximab resistance in an in vitro model. We established a cetuximab resistant model (FaDu), using increased cetuximab concentrations for more than eight months. The resistance and parental cells were evaluated for cell viability and functional assays. Protein expression was analyzed by Western blot and human cell surface panel by lyoplate. The mutational profile and copy number alterations (CNA) were analyzed using whole-exome sequencing (WES) and the NanoString platform. FaDu resistant clones exhibited at least two-fold higher IC50 compared to the parental cell line. WES showed relevant mutations in several cancer-related genes, and the comparative mRNA expression analysis showed 36 differentially expressed genes associated with EGFR tyrosine kinase inhibitors resistance, RAS, MAPK, and mTOR signaling. Importantly, we observed that overexpression of KRAS, RhoA, and CD44 was associated with cetuximab resistance. Protein analysis revealed EGFR phosphorylation inhibition and mTOR increase in resistant cells. Moreover, the resistant cell line demonstrated an aggressive phenotype with a significant increase in adhesion, the number of colonies, and migration rates. Overall, we identified several molecular alterations in the cetuximab resistant cell line that may constitute novel biomarkers of cetuximab response such as mTOR and RhoA overexpression. These findings indicate new strategies to overcome anti-EGFR resistance in HNSCC.This work was supported by Barretos Cancer Hospital and the Public Ministry of Labor Campinas (Research, Prevention, and Education of Occupational Cancer) in Campinas, Brazil, CAPESDFATD (88887.137283/2017-00). INFG is the recipient of a FAPESP Ph.D. fellowship (2017/22305-9)

    From harmful Microcystis blooms to multi-functional core-double-shell microsphere bio-hydrochar materials

    Get PDF
    Harmful algal blooms (HABs) induced by eutrophication is becoming a serious global environmental problem affecting public health and aquatic ecological sustainability. A novel strategy for the utilization of biomass from HABs was developed by converting the algae cells into hollow mesoporous biohydrochar microspheres via hydrothermal carbonization method. The hollow microspheres were used as microreactors and carriers for constructing CaO2 core-mesoporous shell-CaO2 shell microspheres (OCRMs). The CaO2 shells could quickly increase dissolved oxygen to extremely anaerobic water in the initial 40 min until the CaO2 shells were consumed. The mesoporous shells continued to act as regulators restricting the release of oxygen from CaO2 cores. The oxygen-release time using OCRMs was 7 times longer than when directly using CaO2. More interestingly, OCRMs presented a high phosphate removal efficiency (95.6%) and prevented the pH of the solution from rising to high levels in comparison with directly adding CaO2 due to the OH− controlled-release effect of OCRMs. The distinct core-doubleshell micro/nanostructure endowed the OCRMs with triple functions for oxygen controlled-release, phosphorus removal and less impact on water pH. The study is to explore the possibility to prepare smarter bio-hydrochar materials by utilizing algal blooms

    Review

    No full text

    Review

    No full text
    corecore