772 research outputs found

    CLAD: A Complex and Long Activities Dataset with Rich Crowdsourced Annotations

    Get PDF
    This paper introduces a novel activity dataset which exhibits real-life and diverse scenarios of complex, temporally-extended human activities and actions. The dataset presents a set of videos of actors performing everyday activities in a natural and unscripted manner. The dataset was recorded using a static Kinect 2 sensor which is commonly used on many robotic platforms. The dataset comprises of RGB-D images, point cloud data, automatically generated skeleton tracks in addition to crowdsourced annotations. Furthermore, we also describe the methodology used to acquire annotations through crowdsourcing. Finally some activity recognition benchmarks are presented using current state-of-the-art techniques. We believe that this dataset is particularly suitable as a testbed for activity recognition research but it can also be applicable for other common tasks in robotics/computer vision research such as object detection and human skeleton tracking

    A program to analyse optical coherence tomography images of the ciliary muscle

    Get PDF
    Purpose: To describe and validate bespoke software designed to extract morphometric data from ciliary muscle Visante Anterior Segment Optical Coherence Tomography (AS-OCT) images. Method: Initially, to ensure the software was capable of appropriately applying tiered refractive index corrections and accurately measuring orthogonal and oblique parameters, 5 sets of custom-made rigid gas-permeable lenses aligned to simulate the sclera and ciliary muscle were imaged by the Visante AS-OCT and were analysed by the software. Human temporal ciliary muscle data from 50 participants extracted via the internal Visante AS-OCT caliper method and the software were compared. The repeatability of the software was also investigated by imaging the temporal ciliary muscle of 10 participants on 2 occasions. Results: The mean difference between the software and the absolute thickness measurements of the rigid gas-permeable lenses were not statistically significantly different from 0 (t = -1.458, p = 0.151). Good correspondence was observed between human ciliary muscle measurements obtained by the software and the internal Visante AS-OCT calipers (maximum thickness t = -0.864, p = 0.392, total length t = 0.860, p = 0.394). The software extracted highly repeatable ciliary muscle measurements (variability ≤6% of mean value). Conclusion: The bespoke software is capable of extracting accurate and repeatable ciliary muscle measurements and is suitable for analysing large data sets

    The antioxidant action of tamoxifen and its metabolites Inhibition of lipid peroxidation

    Get PDF
    AbstractThe anti-oestrogen drug tamoxifen is an inhibitor of lipid peroxidation in rat liver microsomes and in phospholipid liposomes. Its cis isomer and N-desmethyl form are weaker inhibitors, but 4-hydroxytamoxifen is much more powerful. It is possible that the antioxidant property of tamoxifen might contribute to its biological actions

    Dynamical replica theoretic analysis of CDMA detection dynamics

    Full text link
    We investigate the detection dynamics of the Gibbs sampler for code-division multiple access (CDMA) multiuser detection. Our approach is based upon dynamical replica theory which allows an analytic approximation to the dynamics. We use this tool to investigate the basins of attraction when phase coexistence occurs and examine its efficacy via comparison with Monte Carlo simulations.Comment: 18 pages, 2 figure

    Poly(triazolyl methacrylate) glycopolymers as potential targeted unimolecular nanocarriers

    Get PDF
    © The Royal Society of Chemistry 2019.Synthetic glycopolymers are increasingly investigated as multivalent ligands for a range of biological and biomedical applications. This study indicates that glycopolymers with a fine-tuned balance between hydrophilic sugar pendant units and relatively hydrophobic polymer backbones can act as single-chain targeted nanocarriers for low molecular weight hydrophobic molecules. Non-covalent complexes formed from poly(triazolyl methacrylate) glycopolymers and low molecular weight hydrophobic guest molecules were characterised through a range of analytical techniques-DLS, SLS, TDA, fluorescence spectroscopy, surface tension analysis-and molecular dynamics (MD) modelling simulations provided further information on the macromolecular characteristics of these single chain complexes. Finally, we show that these nanocarriers can be utilised to deliver a hydrophobic guest molecule, Nile red, to both soluble and surface-immobilised concanavalin A (Con A) and peanut agglutinin (PNA) model lectins with high specificity, showing the potential of non-covalent complexation with specific glycopolymers in targeted guest-molecule delivery.Peer reviewedFinal Published versio

    Symmetric sequence processing in a recurrent neural network model with a synchronous dynamics

    Full text link
    The synchronous dynamics and the stationary states of a recurrent attractor neural network model with competing synapses between symmetric sequence processing and Hebbian pattern reconstruction is studied in this work allowing for the presence of a self-interaction for each unit. Phase diagrams of stationary states are obtained exhibiting phases of retrieval, symmetric and period-two cyclic states as well as correlated and frozen-in states, in the absence of noise. The frozen-in states are destabilised by synaptic noise and well separated regions of correlated and cyclic states are obtained. Excitatory or inhibitory self-interactions yield enlarged phases of fixed-point or cyclic behaviour.Comment: Accepted for publication in Journal of Physics A: Mathematical and Theoretica

    Order-Parameter Flow in the SK Spin-Glass II: Inclusion of Microscopic Memory Effects

    Full text link
    We develop further a recent dynamical replica theory to describe the dynamics of the Sherrington-Kirkpatrick spin-glass in terms of closed evolution equations for macroscopic order parameters. We show how microscopic memory effects can be included in the formalism through the introduction of a dynamic order parameter function: the joint spin-field distribution. The resulting formalism describes very accurately the relaxation phenomena observed in numerical simulations, including the typical overall slowing down of the flow that was missed by the previous simple two-parameter theory. The advanced dynamical replica theory is either exact or a very good approximation.Comment: same as original, but this one is TeXabl
    • …
    corecore