1,527 research outputs found
Converting NAD83 GPS heights into NAVD88 elevations with LVGEOID, a hybrid geoid height model for the Long Valley volcanic region, California
A GPS survey of leveling benchmarks done in Long
Valley Caldera in 1999 showed that the application of the
National Geodetic Survey (NGS) geoid model GEOID99 to
tie GPS heights to historical leveling measurements would
significantly underestimate the caldera ground deformation (known from other geodetic measurements). The NGS
geoid model was able to correctly reproduce the shape of the
deformation, but required a local adjustment to give a realistic estimate of the magnitude of the uplift. In summer 2006,
the U.S. Geological Survey conducted a new leveling survey
along two major routes crossing the Long Valley region from
north to south (Hwy 395) and from east to west (Hwy 203 –
Benton Crossing). At the same time, 25 leveling bench marks
were occupied with dual frequency GPS receivers to provide a
measurement of the ellipsoid heights. Using the heights from
these two surveys, we were able to compute a precise geoid
height model (LVGEOID) for the Long Valley volcanic region.
Our results show that although the LVGEOID and the latest
NGS GEOID03 model practically coincide in areas outside
the caldera, there is a difference of up to 0.2 m between the
two models within the caldera. Accounting for this difference
is critical when using the geoid height model to estimate the
ground deformation due to magmatic or tectonic activity in the
calder
Binding energy and dephasing of biexcitons in In0.18Ga0.82As/GaAs single quantum wells
Biexciton binding energies and biexciton dephasing in In0.18Ga0.82As/GaAs single quantum wells have been measured by time-integrated and spectrally resolved four-wave mixing. The biexciton binding energy increases from 1.5 to 2.6 meV for well widths increasing from 1 to 4 nm. The ratio between exciton and biexciton binding energy changes from 0.23 to 0.3 with increasing inhomogeneous broadening, corresponding to increasing well width. From the temperature dependence of the exciton and biexciton four-wave mixing signal decay, we have deduced the acoustic-phonon scattering of the exciton-biexciton transition. It is found to be comparable to that of the exciton transition, indicating that the deformation potential interactions for the exciton and the exciton-biexciton transitions are comparable
Nonuniversality of the dispersion interaction: analytic benchmarks for van der Waals energy functionals
We highlight the non-universality of the asymptotic behavior of dispersion
forces, such that a sum of inverse sixth power contributions is often
inadequate. We analytically evaluate the cross-correlation energy Ec between
two pi-conjugated layers separated by a large distance D within the
electromagnetically non-retarded Random Phase Approximation, via a
tight-binding model. For two perfect semimetallic graphene sheets at T=0K we
find Ec = C D^{-3}, in contrast to the "insulating" D^{-4} dependence predicted
by currently accepted approximations. We also treat the case where one graphene
layer is replaced by a thin metal, a model relevant to the exfoliation of
graphite. Our general considerations also apply to nanotubes, nanowires and
layered metals.Comment: 4 pages, 0 fig
Resonant state expansion applied to planar waveguides
The resonant state expansion, a recently developed method in electrodynamics,
is generalized here to planar open optical systems with non-normal incidence of
light. The method is illustrated and verified on exactly solvable examples,
such as a dielectric slab and a Bragg reflector microcavity, for which explicit
analytic formulas are developed. This comparison demonstrates the accuracy and
convergence of the method. Interestingly, the spectral analysis of a dielectric
slab in terms of resonant states reveals an influence of waveguide modes in the
transmission. These modes, which on resonance do not couple to external light,
surprisingly do couple to external light for off-resonant excitation
Coherence dynamics and quantum-to-classical crossover in an exciton-cavity system in the quantum strong coupling regime
Interaction between light and matter generates optical nonlinearities, which are particularly pronounced in the quantum strong coupling regime. When a single bosonic mode couples to a single fermionic mode, a Jaynes-Cummings (JC) ladder is formed, which we realize here using cavity photons and quantum dot excitons. We measure and model the coherent anharmonic response of this strongly coupled exciton-cavity system at resonance. Injecting two photons into the cavity, we demonstrate a root 2 larger polariton splitting with respect to the vacuum Rabi splitting. This is achieved using coherent nonlinear spectroscopy, specifically four-wave mixing, where the coherence between the ground state and the first (second) rung of the JC ladder can be interrogated for positive (negative) delays. With increasing excitation intensity and thus rising average number of injected photons, we observe spectral signatures of the quantum-to-classical crossover of the strong coupling regime.Peer reviewe
Microcavity controlled coupling of excitonic qubits
Controlled non-local energy and coherence transfer enables light harvesting
in photosynthesis and non-local logical operations in quantum computing. The
most relevant mechanism of coherent coupling of distant qubits is coupling via
the electromagnetic field. Here, we demonstrate the controlled coherent
coupling of spatially separated excitonic qubits via the photon mode of a solid
state microresonator. This is revealed by two-dimensional spectroscopy of the
sample's coherent response, a sensitive and selective probe of the coherent
coupling. The experimental results are quantitatively described by a rigorous
theory of the cavity mediated coupling within a cluster of quantum dots
excitons. Having demonstrated this mechanism, it can be used in extended
coupling channels - sculptured, for instance, in photonic crystal cavities - to
enable a long-range, non-local wiring up of individual emitters in solids
Physical Adsorption at the Nanoscale: Towards Controllable Scaling of the Substrate-Adsorbate van der Waals Interaction
The Lifshitz-Zaremba-Kohn (LZK) theory is commonly considered as the correct
large-distance limit for the van der Waals (vdW) interaction of adsorbates
(atoms, molecules, or nanoparticles) with solid substrates. In the standard
approximate form, implicitly based on "local" dielectric functions, the LZK
approach predicts universal power laws for vdW interactions depending only on
the dimensionality of the interacting objects. However, recent experimental
findings are challenging the universality of this theoretical approach at
finite distances of relevance for nanoscale assembly. Here, we present a
combined analytical and numerical many-body study demonstrating that physical
adsorption can be significantly enhanced at the nanoscale. Regardless of the
band gap or the nature of the adsorbate specie, we find deviations from
conventional LZK power laws that extend to separation distances of up to 10--20
nanometers. Comparison with recent experimental observation of ultra
long-ranged vdW interactions in the delamination of graphene from a silicon
substrate reveals qualitative agreement with the present theory. The
sensitivity of vdW interactions to the substrate response and to the adsorbate
characteristic excitation frequency also suggests that adsorption strength can
be effectively tuned in experiments, paving the way to an improved control of
physical adsorption at the nanoscale
Impact of phonons on dephasing of individual excitons in deterministic quantum dot microlenses
Optimized light-matter coupling in semiconductor nanostructures is a key to
understand their optical properties and can be enabled by advanced fabrication
techniques. Using in-situ electron beam lithography combined with a
low-temperature cathodoluminescence imaging, we deterministically fabricate
microlenses above selected InAs quantum dots (QDs) achieving their efficient
coupling to the external light field. This enables to perform four-wave mixing
micro-spectroscopy of single QD excitons, revealing the exciton population and
coherence dynamics. We infer the temperature dependence of the dephasing in
order to address the impact of phonons on the decoherence of confined excitons.
The loss of the coherence over the first picoseconds is associated with the
emission of a phonon wave packet, also governing the phonon background in
photoluminescence (PL) spectra. Using theory based on the independent boson
model, we consistently explain the initial coherence decay, the zero-phonon
line fraction, and the lineshape of the phonon-assisted PL using realistic
quantum dot geometries
Anisotropic carrier and exciton confinement in T-shaped quantum wires revealed by magneto-photoluminescence
Retardation turns the van der Waals attraction into Casimir repulsion already at 3 nm
Casimir forces between surfaces immersed in bromobenzene have recently been
measured by Munday et al. Attractive Casimir forces were found between gold
surfaces. The forces were repulsive between gold and silica surfaces. We show
the repulsion is due to retardation effects. The van der Waals interaction is
attractive at all separations. The retardation driven repulsion sets in already
at around 3 nm. To our knowledge retardation effects have never been found at
such a small distance before. Retardation effects are usually associated with
large distances
- …
