1,149 research outputs found
Observation of zero-point quantum fluctuations of a single-molecule magnet through the relaxation of its nuclear spin bath
A single-molecule magnet placed in a magnetic field perpendicular to its
anisotropy axis can be truncated to an effective two-level system, with easily
tunable energy splitting. The quantum coherence of the molecular spin is
largely determined by the dynamics of the surrounding nuclear spin bath. Here
we report the measurement of the nuclear spin--lattice relaxation in a single
crystal of the single-molecule magnet Mn-ac, at mK in
perpendicular fields up to 9 T. Although the molecular spin is in
its ground state, we observe an increase of the nuclear relaxation rates by
several orders of magnitude up to the highest . This unique finding
is a consequence of the zero-point quantum fluctuations of the Mn-ac
spin, which allow it to efficiently transfer energy from the excited nuclear
spin bath to the lattice. Our experiment highlights the importance of quantum
fluctuations in the interaction between an `effective two-level system' and its
surrounding spin bath.Comment: 5 pages, 4 figure
Complex-linear invariants of biochemical networks
The nonlinearities found in molecular networks usually prevent mathematical
analysis of network behaviour, which has largely been studied by numerical
simulation. This can lead to difficult problems of parameter determination.
However, molecular networks give rise, through mass-action kinetics, to
polynomial dynamical systems, whose steady states are zeros of a set of
polynomial equations. These equations may be analysed by algebraic methods, in
which parameters are treated as symbolic expressions whose numerical values do
not have to be known in advance. For instance, an "invariant" of a network is a
polynomial expression on selected state variables that vanishes in any steady
state. Invariants have been found that encode key network properties and that
discriminate between different network structures. Although invariants may be
calculated by computational algebraic methods, such as Gr\"obner bases, these
become computationally infeasible for biologically realistic networks. Here, we
exploit Chemical Reaction Network Theory (CRNT) to develop an efficient
procedure for calculating invariants that are linear combinations of
"complexes", or the monomials coming from mass action. We show how this
procedure can be used in proving earlier results of Horn and Jackson and of
Shinar and Feinberg for networks of deficiency at most one. We then apply our
method to enzyme bifunctionality, including the bacterial EnvZ/OmpR osmolarity
regulator and the mammalian
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase glycolytic regulator,
whose networks have deficiencies up to four. We show that bifunctionality leads
to different forms of concentration control that are robust to changes in
initial conditions or total amounts. Finally, we outline a systematic procedure
for using complex-linear invariants to analyse molecular networks of any
deficiency.Comment: 36 pages, 6 figure
Observation of zero-point quantum fluctuations of a single-molecule magnet through the relaxation of its nuclear spin bath
Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).A single-molecule magnet placed in a magnetic field perpendicular to its anisotropy axis can be truncated to an effective two-level system, with easily tunable energy splitting. The quantum coherence of the molecular spin is largely determined by the dynamics of the surrounding nuclear spin bath. Here we report the measurement of the nuclear spin-lattice relaxation rate 1/T1n in a single crystal of the single-molecule magnet Mn12-ac, at T≈30 mK in perpendicular fields B⊥ up to 9 T. The relaxation channel at B≈0 is dominated by incoherent quantum tunneling of the Mn12-ac spin S, aided by the nuclear bath itself. However for B⊥>5 T we observe an increase of 1/T1n by several orders of magnitude up to the highest field, despite the fact that the molecular spin is in its quantum mechanical ground state. This striking observation is a consequence of the zero-point quantum fluctuations of S, which allow it to mediate the transfer of energy from the excited nuclear spin bath to the crystal lattice at much higher rates. Our experiment highlights the importance of quantum fluctuations in the interaction between an >effective two-level system> and its surrounding spin bath. © 2014 American Physical Society.This work has been part of the research program of the “Stichting FOM.”Peer Reviewe
Color pattern recognition with circular component whitening
Polychromatic object recognition based on circular whitening preprocessing of red-green-blue components and multichannel matched filtering is described. Computer simulations and experimental results are provided to facilitate recognizing a color target among objects of similar shape but with different color contents. Experimental results are obtained with an optical correlator with two spatial light modulators, one to introduce the scene and the second one to introduce the filter
Real-Time and Low-Cost Sensing Technique Based on Photonic Bandgap Structures
This paper was published in OPTICS LETTERS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.36.002707. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law[EN] A technique for the development of low-cost and high-sensitivity photonic biosensing devices is proposed and experimentally demonstrated. In this technique, a photonic bandgap structure is used as transducer, but its readout is performed by simply using a broadband source, an optical filter, and a power meter, without the need of obtaining the transmission spectrum of the structure; thus, a really low-cost system and real-time results are achieved. Experimental results show that it is possible to detect very low refractive index variations, achieving a detection limit below 2 x 10(-6) refractive index units using this low-cost measuring technique. (C) 2011 Optical Society of America[This work was funded by the Spanish Ministerio de Ciencia e Innovacion (MICINN) under contracts TEC2008-06333, JCI-009-5805, and TEC2008-05490. Support by the Universidad Politecnica de Valencia through program PAID-06-09 and the Conselleria d'Educacio through program GV-2010-031 is acknowledged.García Castelló, J.; Toccafondo, V.; Pérez Millán, P.; Sánchez Losilla, N.; Cruz, JL.; Andres, MV.; García-Rupérez, J. (2011). Real-Time and Low-Cost Sensing Technique Based on Photonic Bandgap Structures. Optics Letters. 36(14):2707-2709. https://doi.org/10.1364/OL.36.002707S270727093614Fan, X., White, I. M., Shopova, S. I., Zhu, H., Suter, J. D., & Sun, Y. (2008). Sensitive optical biosensors for unlabeled targets: A review. Analytica Chimica Acta, 620(1-2), 8-26. doi:10.1016/j.aca.2008.05.022Homola, J., Yee, S. S., & Gauglitz, G. (1999). Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 54(1-2), 3-15. doi:10.1016/s0925-4005(98)00321-9Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K. P., Askins, C. G., … Friebele, E. J. (1997). Fiber grating sensors. Journal of Lightwave Technology, 15(8), 1442-1463. doi:10.1109/50.618377De Vos, K., Bartolozzi, I., Schacht, E., Bienstman, P., & Baets, R. (2007). Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Optics Express, 15(12), 7610. doi:10.1364/oe.15.007610Iqbal, M., Gleeson, M. A., Spaugh, B., Tybor, F., Gunn, W. G., Hochberg, M., … Gunn, L. C. (2010). Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation. IEEE Journal of Selected Topics in Quantum Electronics, 16(3), 654-661. doi:10.1109/jstqe.2009.2032510Xu, D.-X., Vachon, M., Densmore, A., Ma, R., Delâge, A., Janz, S., … Schmid, J. H. (2010). Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach. Optics Letters, 35(16), 2771. doi:10.1364/ol.35.002771Skivesen, N., Têtu, A., Kristensen, M., Kjems, J., Frandsen, L. H., & Borel, P. I. (2007). Photonic-crystal waveguide biosensor. Optics Express, 15(6), 3169. doi:10.1364/oe.15.003169Lee, M. R., & Fauchet, P. M. (2007). Nanoscale microcavity sensor for single particle detection. Optics Letters, 32(22), 3284. doi:10.1364/ol.32.003284García-Rupérez, J., Toccafondo, V., Bañuls, M. J., Castelló, J. G., Griol, A., Peransi-Llopis, S., & Maquieira, Á. (2010). Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime. Optics Express, 18(23), 24276. doi:10.1364/oe.18.024276Toccafondo, V., García-Rupérez, J., Bañuls, M. J., Griol, A., Castelló, J. G., Peransi-Llopis, S., & Maquieira, A. (2010). Single-strand DNA detection using a planar photonic-crystal-waveguide-based sensor. Optics Letters, 35(21), 3673. doi:10.1364/ol.35.003673Luff, B. J., Wilson, R., Schiffrin, D. J., Harris, R. D., & Wilkinson, J. S. (1996). Integrated-optical directional coupler biosensor. Optics Letters, 21(8), 618. doi:10.1364/ol.21.000618Sepúlveda, B., Río, J. S. del, Moreno, M., Blanco, F. J., Mayora, K., Domínguez, C., & Lechuga, L. M. (2006). Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices. Journal of Optics A: Pure and Applied Optics, 8(7), S561-S566. doi:10.1088/1464-4258/8/7/s41Densmore, A., Vachon, M., Xu, D.-X., Janz, S., Ma, R., Li, Y.-H., … Schmid, J. H. (2009). Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection. Optics Letters, 34(23), 3598. doi:10.1364/ol.34.003598Povinelli, M. L., Johnson, S. G., & Joannopoulos, J. D. (2005). Slow-light, band-edge waveguides for tunable time delays. Optics Express, 13(18), 7145. doi:10.1364/opex.13.007145Garcia, J., Sanchis, P., Martinez, A., & Marti, J. (2008). 1D periodic structures for slow-wave induced non-linearity enhancement. Optics Express, 16(5), 3146. doi:10.1364/oe.16.003146Pérez-Millán, P., Torres-Peiró, S., Cruz, J. L., & Andrés, M. V. (2008). Fabrication of chirped fiber Bragg gratings by simple combination of stretching movements. Optical Fiber Technology, 14(1), 49-53. doi:10.1016/j.yofte.2007.07.00
Transitional dispersive scenarios driven by mesoscale flows on complex terrain under strong dry convective conditions
By experimentation and modelling, this paper analyses the atmospheric dispersion of the SO<sub>2</sub> emissions from a power plant on complex terrain under strong convective conditions, describing the main dispersion features as an ensemble of "stationary dispersive scenarios" and reformulating some "classical" dispersive concepts to deal with the systematically monitored summer dispersive scenarios in inland Spain. The results and discussions presented arise from a statistically representative study of the physical processes associated with the multimodal distribution of pollutants aloft and around a 343-m-tall chimney under strong dry convective conditions in the Iberian Peninsula. This paper analyses the importance of the identification and physical implications of transitional periods for air quality applications. The indetermination of a transversal plume to the preferred transport direction during these transitional periods implies a small (or null) physical significance of the classical definition of horizontal standard deviation of the concentration distribution
Temperature dependence of antiferromagnetic susceptibility in ferritin
We show that antiferromagnetic susceptibility in ferritin increases with
temperature between 4.2 K and 180 K (i. e. below the N\'{e}el temperature) when
taken as the derivative of the magnetization at high fields (
Oe). This behavior contrasts with the decrease in temperature previously found,
where the susceptibility was determined at lower fields ( Oe). At
high fields (up to Oe) the temperature dependence of the
antiferromagnetic susceptibility in ferritin nanoparticles approaches the
normal behavior of bulk antiferromagnets and nanoparticles considering
superantiferromagnetism, this latter leading to a better agreement at high
field and low temperature. The contrast with the previous results is due to the
insufficient field range used ( Oe), not enough to saturate the
ferritin uncompensated moment.Comment: 7 pages, 7 figures, accepted in Phys. Rev.
Concatenated non-stationary dispersive scenarios on complex terrain under summer conditions
International audienceThe results and discussions presented in this paper arise from a statistically representative study of the physical processes associated with the multimodal distribution of pollutants aloft and around a 343-m-tall chimney under summer conditions in the Iberian Peninsula. The indetermination of a transversal plume to the preferred transport direction during transitional periods implies a small (or null) physical significance of the classical definition of horizontal standard deviation of the concentration distribution. By experimentation and modelling, this paper analyses the atmospheric dispersion of the SO2 emissions from a power plant on complex terrain, describing the main dispersion features as an ensemble of "stationary dispersive scenarios" and reformulating some "classical" dispersive concepts to deal with the systematically monitored summer dispersive scenarios in inland Spain
Photon creation in a spherical oscillating cavity
We study the photon creation inside a perfectly conducting, spherical
oscillating cavity. The electromagnetic field inside the cavity is described by
means of two scalar fields which satisfy Dirichlet and (generalized) Neumann
boundary conditions. As a preliminary step, we analyze the dynamical Casimir
effect for both scalar fields. We then consider the full electromagnetic case.
The conservation of angular momentum of the electromagnetic field is also
discussed, showing that photons inside the cavity are created in singlet
states.Comment: 14 pages, no figure
- …