1,311 research outputs found
General criterion for oblivious remote state preparation
A necessary and sufficient condition is given for general exact remote state
preparation (RSP) protocols to be oblivious, that is, no information about the
target state can be retrieved from the classical message. A novel criterion in
terms of commutation relations is also derived for the existence of
deterministic exact protocols in which Alice's measurement eigenstates are
related to each other by fixed linear operators similar to Bob's unitaries. For
non-maximally entangled resources, it provides an easy way to search for RSP
protocols. As an example, we show how to reduce the case of partially entangled
resources to that of maximally entangled ones, and we construct RSP protocols
exploiting the structure of the irreducible representations of Abelian groups.Comment: 5 pages, RevTe
Modelling the incomplete Paschen-Back effect in the spectra of magnetic Ap stars
We present first results of a systematic investigation of the incomplete
Paschen-Back effect in magnetic Ap stars. A short overview of the theory is
followed by a demonstration of how level splittings and component strengths
change with magnetic field strength for some lines of special astrophysical
interest. Requirements are set out for a code which allows the calculation of
full Stokes spectra in the Paschen-Back regime and the behaviour of Stokes I
and V profiles of transitions in the multiplet 74 of FeII is discussed in some
detail. It is shown that the incomplete Paschen-Back effect can lead to
noticeable line shifts which strongly depend on total multiplet strength,
magnetic field strength and field direction. Ghost components (which violate
the normal selection rule on J) show up in strong magnetic fields but are
probably unobservable. Finally it is shown that measurements of the integrated
magnetic field modulus are not adversely affected by the Paschen-Back
effect, and that there is a potential problem in (magnetic) Doppler mapping if
lines in the Paschen-Back regime are treated in the Zeeman approximation.Comment: 8 pages, 10 figures, to appear in MNRA
Quantized recurrence time in iterated open quantum dynamics
The expected return time to the original state is a key concept
characterizing systems obeying both classical or quantum dynamics. We consider
iterated open quantum dynamical systems in finite dimensional Hilbert spaces, a
broad class of systems that includes classical Markov chains and unitary
discrete time quantum walks on networks. Starting from a pure state, the time
evolution is induced by repeated applications of a general quantum channel, in
each timestep followed by a measurement to detect whether the system has
returned to the original state. We prove that if the superoperator is unital in
the relevant Hilbert space (the part of the Hilbert space explored by the
system), then the expectation value of the return time is an integer, equal to
the dimension of this relevant Hilbert space. We illustrate our results on
partially coherent quantum walks on finite graphs. Our work connects the
previously known quantization of the expected return time for bistochastic
Markov chains and for unitary quantum walks, and shows that these are special
cases of a more general statement. The expected return time is thus a
quantitative measure of the size of the part of the Hilbert space available to
the system when the dynamics is started from a certain state
Parametric amplification of the mechanical vibrations of a suspended nanowire by magnetic coupling to a Bose-Einstein condensate
We consider the possibility of parametric amplification of a mechanical
vibration mode of a nanowire due to its interaction with a Bose-Einstein
condensate (BEC) of ultracold atoms. The magneto-mechanical coupling is
mediated by the vibrationally modulated magnetic field around the
current-carrying nanowire, which can induce atomic transitions between
different hyperfine sublevels. We theoretically analyze the limitations arising
from the fact that the spin inverted atomic medium which feeds the mechanical
oscillation has a finite bandwidth in the range of the chemical potential of
the condensate
Continuous variable remote state preparation
We extend exact deterministic remote state preparation (RSP) with minimal
classical communication to quantum systems of continuous variables. We show
that, in principle, it is possible to remotely prepare states of an ensemble
that is parameterized by infinitely many real numbers, i.e., by a real
function, while the classical communication cost is one real number only. We
demonstrate continuous variable RSP in three examples using (i) quadrature
measurement and phase space displacement operations, (ii) measurement of the
optical phase and unitaries shifting the same, and (iii) photon counting and
photon number shift.Comment: 7 pages, RevTeX
Search for the companions of Galactic SNe Ia
The central regions of the remnants of Galactic SNe Ia have been examined for
the presence of companion stars of the exploded supernovae. We present the
results of this survey for the historical SN 1572 and SN 1006. The spectra of
the stars are modeled to obtain Teff, log g and the metallicity. Radial
velocities are obtained with an accuracy of 5--10 km s. Implications for
the nature of the companion star in SNeIa follow.Comment: 8 pages, 2 Postscript figures. Appeared in "From Twilight to
Highlight: the Physics of Supernovae", ed. W. Hillebrandt & B. Leibundgut
(Springer), pp. 140-14
The Chemical Composition of Cernis 52 (BD+31 640)
We present an abundance analysis of the star Cernis 52 in whose spectrum we
recently reported the napthalene cation in absorption at 6707.4 {\AA}. This
star is on a line of sight to the Perseus molecular complex. The analysis of
high-resolution spectra using a chi^2-minimization procedure and a grid of
synthetic spectra provides the stellar parameters and the abundances of O, Mg,
Si, S, Ca, and Fe. The stellar parameters of this star are found to be T_{eff}
= 8350 +- 200 K, logg= 4.2 +- 0.4 dex. We derived a metallicity of [Fe/H] =
-0.01 +- 0.15. These stellar parameters are consistent with a star of
\Msun in a pre-main-sequence evolutionary stage. The stellar spectrum is
significantly veiled in the spectral range 5150-6730 {\AA} up to almost 55 per
cent of the total flux at 5150 {\AA} and decreasing towards longer wavelengths.
Using Johnson-Cousins and 2MASS photometric data, we determine a distance to
Cernis 52 of 231 pc considering the error bars of the stellar
parameters. This determination places the star at a similar distance to the
young cluster IC 348. This together with its radial velocity, v_r=13.7+-1 km/s,
its proper motion and probable young age support Cernis 52 as a likely member
of IC 348. We determine a rotational velocity of v\sin i=65 +- 5 km/s for this
star. We confirm that the stellar resonance line of \ion{Li}{1} at 6707.8 {\AA}
is unable to fit the broad feature at 6707.4 {\AA}. This feature should have a
interstellar origin and could possibly form in the dark cloud L1470 surrounding
all the cluster IC 348 at about the same distance.Comment: Accepted for publication in The Astrophysical Journa
- …