6,872 research outputs found

    Facile preparation of agarose-chitosan hybrid materials and nanocomposite ionogels using an ionic liquid via dissolution, regeneration and sol-gel transition

    Get PDF
    We report simultaneous dissolution of agarose (AG) and chitosan (CH) in varying proportions in an ionic liquid (IL), 1-butyl-3-methylimidazolium chloride [C4mim][Cl]. Composite materials were constructed from AG-CH-IL solutions using the antisolvent methanol, and IL was recovered from the solutions. Composite materials could be uniformly decorated with silver oxide (Ag2O) nanoparticles (Ag NPs) to form nanocomposites in a single step by in situ synthesis of Ag NPs in AG-CH-IL sols, wherein the biopolymer moiety acted as both reducing and stabilizing agent. Cooling of Ag NPs-AG-CH-IL sols to room temperature resulted in high conductivity and high mechanical strength nanocomposite ionogels. The structure, stability and physiochemical properties of composite materials and nanocomposites were characterized by several analytical techniques, such as Fourier transform infrared (FTIR), CD spectroscopy, differential scanning colorimetric (DSC), thermogravimetric analysis (TGA), gel permeation chromatography (GPC), and scanning electron micrography (SEM). The result shows that composite materials have good thermal and conformational stability, compatibility and strong hydrogen bonding interactions between AG-CH complexes. Decoration of Ag NPs in composites and ionogels was confirmed by UV-Vis spectroscopy, SEM, TEM, EDAX and XRD. The mechanical and conducting properties of composite ionogels have been characterized by rheology and current-voltage measurements. Since Ag NPs show good antimicrobial activity, Ag NPs -AG-CH composite materials have the potential to be used in biotechnology and biomedical applications whereas nanocomposite ionogels will be suitable as precursors for applications such as quasi-solid dye sensitized solar cells, actuators, sensors or electrochromic displays

    49-Level Cross Switched Cascade Multilevel Inverter Fed Induction Motor Drive

    Get PDF
    To convert DC supply which is output of renewable energy sources to AC supply multilevel inverters are required. Multilevel inverters offer eminent solutions to high voltage high power applications due to the association of several devices in a series configuration. Multilevel inverter output voltage contains lower harmonics compared with conventional 2- level inverter. This paper presents three phase 49-level asymmetrical cross switched cascade multilevel inverter fed Induction motor drive. This topology requires less number of switches compare to cascaded H bridge. Analysis of 49-level cascade cross switched multilevel inverter fed induction motor drive is simulated on MATLAB/SIMULINK platfor

    Characterization of Distributive and Standard Ideals in Semilattices

    Get PDF
    This paper investigates the concepts of distributive ideal, dually distributive ideal and standard ideal in a join semilattice. It concerns with the property of ideals in a distributive semilattice. We obtain a characterization theorem for distributive (dually distributive) and standard ideal in a join semilattice. We establish the necessary and sufficient condition for a distributive ideal to be standard ideal. Finally, we bear out the fundamental theorem of homomorphism and Isomorphism theorem of standard ideal. Keywords: Distributive ideal, Distributive semilattice, Dually Distributive ideal, Standard ideal, Join Semi Lattice

    A strategic approach for preparation of oxide nanomaterials

    Get PDF
    A microwave assisted solvothermal method is described for rapid preparation of nano-oxides. This method is based on exploiting differential dielectric constants to induce preferred heating and decomposition of the oxide precursors in the presence of suitable capping agents. This strategic approach has been used to prepare nanopowders of MgO, NiO, ZnO, Al2O3, Fe2O3 and ZrO2

    Diffuse Neutron Scattering Study of Magnetic Correlations in half-doped La0.5Ca0.5-xSrxMnO3 (x = 0.1, 0.3 and 0.4) Manganites

    Full text link
    The short range ordered magnetic correlations have been studied in half doped La0.5Ca0.5-xSrxMnO3 (x = 0.1, 0.3 and 0.4) compounds by polarized neutron scattering technique. On doping Sr2+ for Ca2+ ion, these compounds with x = 0.1, 0.3, and 0.4 exhibit CE-type, mixture of CE-type and A-type, and A-type antiferromagnetic ordering, respectively. Magnetic diffuse scattering is observed in all the compounds above and below their respective magnetic ordering temperatures and is attributed to magnetic polarons. The correlations are primarily ferromagnetic in nature above T\_N, although a small antiferromagnetic contribution is also evident. Additionally, in samples x = 0.1 and 0.3 with CE-type antiferromagnetic ordering, superlattice diffuse reflections are observed indicating correlations between magnetic polarons. On lowering temperature below T\_N the diffuse scattering corresponding to ferromagnetic correlations is suppressed and the long range ordered antiferromagnetic state is established. However, the short range ordered correlations indicated by enhanced spin flip scattering at low Q coexist with long range ordered state down to 3K. In x = 0.4 sample with A-type antiferromagnetic ordering, superlattice diffuse reflections are absent. Additionally, in comparison to x = 0.1 and 0.3 sample, the enhanced spin flip scattering at low Q is reduced at 310K, and as temperature is reduced below 200K, it becomes negligibly low. The variation of radial correlation function, g(r) with temperature indicates rapid suppression of ferromagnetic correlations at the first nearest neighbor on approaching TN. Sample x = 0.4 exhibits growth of ferromagnetic phase at intermediate temperatures (~ 200K). This has been further explored using SANS and neutron depolarization techniques.Comment: 13 pages, 12 figures, To appear in Physical Review

    Immunohistochemical study of epiretinal membranes in patients with uveitis

    Get PDF
    BACKGROUND: The purpose of this study is to report two cases of idiopathic uveitis with secondary epiretinal membrane (ERM) formation in order to describe histologic and immunohistochemical features that may help distinguish uveitic from idiopathic ERMs. METHODS: The study utilized a clinical case series and histopathological and immunohistochemical findings. RESULTS: There was no identifiable etiology of inflammation in either case. Histology and immunohistochemistry demonstrated a mixture of abundant inflammatory cells, including lymphocytes, histiocytes, plasma cells, and occasional eosinophils, among a stromal matrix composed of glial elements and condensed vitreous, but no retinal pigment epithelium (RPE) was present. The relative proportions of the various inflammatory cell types were assessed with immunohistochemistry, and among the lymphocyte population, T cells predominated over B cells. In one of the cases, there was an abundance of histiocytes, consistent with granulomatous uveitis, which was later confirmed on histology of the enucleated globe. CONCLUSIONS: Idiopathic ERM formation is thought to be secondary to glial cell migration that may require some involvement of RPE cells. The absence of RPE and abundance of inflammatory cells may be used to identify ERMs as secondary to uveitis

    Planning and Control of Mobile Robots in Image Space from Overhead Cameras

    Get PDF
    In this work, we present a framework for the development of a planar mobile robot controller based on image plane feedback. We show that the design of such a motion controller can be accomplished in the image plane by making use of a subset of the parameters that relate the image plane to the ground plane, while still leveraging the simplifications offered by modeling the system as a differentially flat system. Our method relies on a waypoint-based trajectory generator, with all the waypoints specified in the image, as seen by an overhead observer. We present some results from simulation as well as from experiments that validate the ideas presented in this work and discuss some ideas for future wor

    Fragility thy name is glass

    Get PDF
    Fragility is a novel concept to understand the behaviour of glass-forming liquids. Several approaches have been made to quantify fragility. In this paper, some important formulae have been briefly introduced. A new approach has been made, in which the ionicity of bonding and a distance parameter have been introduced on the basis of intuitive arguments. An expression has been proposed on a heuristic basis, which seems to give fragilities in good agreement with the reported F Relx 1/2 fragilities
    • …
    corecore