11 research outputs found
Permanent draft genome of 'Rhodopirellula islandica' strain K833.
The planctomycete strain K833 was isolated from cold waters at the coast of Island and is tentatively named 'Rhodopirellula islandica'. It has a lower temperature range for growth than other genome-sequenced Rhodopirellula strains affiliating to Rhodopirellula baltica and 'Rhodopirellula europaea'. The permanent draft genome of strain K833 was obtained as part of a larger study on the biogeography of Rhodopirellula species in European marine waters. The genome consists of 55 contigs with a genome size of 7,433,200 bp. With an average nucleotide identity of 81% to related genomes of R. baltica and 'R. europaea' and more than 4000 common genes, it will be a valuable source for the study of temperature adaptation of planctomycete genomes
Permanent draft genome of ‘Rhodopirellula islandica’ strain K833
The planctomycete strain K833 was isolated from cold waters at the coast of Island and is tentatively named \u27Rhodopirellula islandica\u27. It has a lower temperature range for growth than other genome-sequenced Rhodopirellula strains affiliating to Rhodopirellula baltica and \u27Rhodopirellula europaea\u27. The permanent draft genome of strain K833 was obtained as part of a larger study on the biogeography of Rhodopirellula species in European marine waters. The genome consists of 55 contigs with a genome size of 7,433,200 bp. With an average nucleotide identity of 81% to related genomes of R. baltica and \u27R. europaea\u27 and more than 4000 common genes, it will be a valuable source for the study of temperature adaptation of planctomycete genomes
Geographic distribution at subspecies resolution level: closely related Rhodopirellula species in European coastal sediments.
Members of the marine genus Rhodopirellula are attached living bacteria and studies based on cultured Rhodopirellula strains suggested that three closely related species R. baltica, 'R. europaea' and 'R. islandica' have a limited geographic distribution in Europe. To address this hypothesis, we developed a nested PCR for a single gene copy detection of a partial acetyl CoA synthetase (acsA) from intertidal sediments collected all around Europe. Furthermore, we performed growth experiments in a range of temperature, salinity and light conditions. A combination of Basic Local Alignment Search Tool (BLAST) and Minimum Entropy Decomposition (MED) was used to analyze the sequences with the aim to explore the geographical distribution of the species and subspecies. MED has been mainly used for the analysis of the 16S rRNA gene and here we propose a protocol for the analysis of protein-coding genes taking into account the degeneracy of the codons and a possible overestimation of functional diversity. The high-resolution analysis revealed differences in the intraspecies community structure in different geographic regions. However, we found all three species present in all regions sampled and in agreement with growth experiments we demonstrated that Rhodopirellula species do not have a limited geographic distribution in Europe
Planctomycetes attached to algal surfaces: Insight into their genomes
Planctomycetes are bacteria with complex molecular and cellular biology. They have large genomes, some over 7 Mb, and complex life cycles that include motile cells and sessile cells. Some live on the complex biofilm of macroalgae. Factors governing their life in this environment were investigated at the genomic level. We analyzed the genomes of three planctomycetes isolated from algal surfaces. The genomes were 6.6 Mbp to 8.1 Mbp large. Genes for outer-membrane proteins, peptidoglycan and lipopolysaccharide biosynthesis were present. Rubripirellula obstinata LF1T, Roseimaritima ulvae UC8T and Mariniblastus fucicola FC18T shared with Rhodopirellula baltica and R. rubra SWK7 unique proteins related to metal binding systems, phosphate metabolism, chemotaxis, and stress response. These functions may contribute to their ecological success in such a complex environment. Exceptionally huge proteins (6000 to 10,000 amino-acids) with extracellular, periplasmic or membrane-associated locations were found which may be involved in biofilm formation or cell adhesion. © 2017 Elsevier Inc.This research was partially supported by the Strategic Funding UID/Multi/04423/2013 through national funds provided by FCT – Foundation for Science and Technology and European Regional Development Fund (ERDF), in the framework of the program PT2020. NB is funded by Marie Curie ITN FP7-ITN316723-PerFuMe and DPD by the C2A grant EE: 2013/2506 from the Andalusian government . We acknowledge Caitlin Lee Carpenter for her help in proof-reading this article
Planctomycetes attached to algal surfaces: Insight into their genomes
Planctomycetes are bacteria with complex molecular and cellular biology. They have large genomes, some over 7 Mb, and complex life cycles that include motile cells and sessile cells. Some live on the complex biofilm of macroalgae. Factors governing their life in this environment were investigated at the genomic level. We analyzed the genomes of three planctomycetes isolated from algal surfaces. The genomes were 6.6 Mbp to 8.1 Mbp large. Genes for outer-membrane proteins, peptidoglycan and lipopolysaccharide biosynthesis were present. Rubripirellula obstinata LF1(T) , Roseimaritima ulvae UC8(T) and Mariniblastus fucicola FC18(T) shared with Rhodopirellula baltica and R. rubra SWK7 unique proteins related to metal binding systems, phosphate metabolism, chemotaxis, and stress response. These functions may contribute to their ecological success in such a complex environment. Exceptionally huge proteins (6000 to 10,000 amino-acids) with extracellular, periplasmic or membrane-associated locations were found which may be involved in biofilm formation or cell adhesion
Thymectomy in Children and Adolescents with Acetylcholine Receptor Antibody Positive Juvenile Myasthenia Gravis
Minimal clinically important differences in functional motor scores in adults with spinal muscular atrophy
Gut bacterial microbiota in patients with myasthenia gravis: results from the MYBIOM study
Background: Myasthenia gravis (MG) is an autoimmune neuromuscular disease, with gut microbiota considered to be a pathogenetic factor. Previous pilot studies have found differences in the gut microbiota of patients with MG and healthy individuals. To determine whether gut microbiota has a pathogenetic role in MG, we compared the gut microbiota of patients with MG with that of patients with non-inflammatory and inflammatory neurological disorders of the peripheral nervous system (primary endpoint) and healthy volunteers (secondary endpoint). Methods: Faecal samples were collected from patients with MG (n = 41), non-inflammatory neurological disorder (NIND, n = 18), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP, n = 6) and healthy volunteers (n = 12). DNA was isolated from these samples, and the variable regions of the 16S rRNA gene were sequenced and statistically analysed. Results: No differences were found in alpha- and beta-diversity indices computed between the MG, NIND and CIDP groups, indicating an unaltered bacterial diversity and structure of the microbial community. However, the alpha-diversity indices, namely Shannon, Chao 1 and abundance-based coverage estimators, were significantly reduced between the MG group and healthy volunteers. Deltaproteobacteria and Faecalibacterium were abundant within the faecal microbiota of patients with MG compared with controls with non-inflammatory diseases. Conclusion: Although the overall diversity and structure of the gut microbiota did not differ between the MG, NIND and CIDP groups, the significant difference in the abundance of Deltaproteobacteria and Faecalibacterium supports the possible role of gut microbiota as a contributor to pathogenesis of MG. Further studies are needed to confirm these findings and to develop possible treatment strategies
