161 research outputs found

    Analyses and localization of pectin-like carbohydrates in cell wall and mucilage of the green alga Netrium digitus

    Get PDF
    The unicellular, simply shaped desmid Netrium digitus inhabiting acid bog ponds grows in two phases. Prior to division, the cell elongates at its central zone, whereas in a second phase, polar tip growth occurs. Electron microscopy demonstrates that Netrium is surrounded by a morphologically homogeneous cell wall, which lacks pores. Immunocytochemical and biochemical analyses give insight into physical wall properties and, thus, into adaptation to the extreme environment. The monoclonal antibodies JIM5 and JIM7 directed against pectic epitopes with different degrees of esterification label preferentially growing wall zones in Netrium. In contrast, 2F4 marks the cell wall only after experimental de-esterification. Electron energy loss spectroscopy reveals Ca-binding capacities of pectins and gives indirect evidence for the degree of their esterification. An antibody raised against Netrium mucilage is not only specific to mucilage but also recognizes wall components in transmission electron microscopy and dot blots. These results indicate a smooth transition between mucilage and the cell wall in Netrium

    Inducible liver-specific knockdown of protein tyrosine phosphatase 1B improves glucose and lipid homeostasis in adult mice.

    Get PDF
    AIMS/HYPOTHESIS Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin signalling. Hepatic PTP1B deficiency, using the Alb-Cre promoter to drive Ptp1b deletion from birth in mice, improves glucose homeostasis, insulin sensitivity and lipid metabolism. The aim of this study was to investigate the therapeutic potential of decreasing liver PTP1B levels in obese and insulin-resistant adult mice. METHODS Inducible Ptp1b liver-specific knockout mice were generated using SA-Cre-ER(T2) mice crossed with Ptp1b floxed (Ptp1b(fl/fl)) mice. Mice were fed a high-fat diet (HFD) for 12 weeks to induce obesity and insulin resistance. Tamoxifen was administered in the HFD to induce liver-specific deletion of Ptp1b (SA-Ptp1b(-/-) mice). Body weight, glucose homeostasis, lipid homeostasis, serum adipokines, insulin signalling and endoplasmic reticulum (ER) stress were examined. RESULTS Despite no significant change in body weight relative to HFD-fed Ptp1b(fl/fl) control mice, HFD-fed SA-Ptp1b(-/-) mice exhibited a reversal of glucose intolerance as determined by improved glucose and pyruvate tolerance tests, decreased fed and fasting blood glucose and insulin levels, lower HOMA of insulin resistance, circulating leptin, serum and liver triacylglycerols, serum NEFA and decreased HFD-induced ER stress. This was associated with decreased glycogen synthase, eukaryotic translation initiation factor-2α kinase 3, eukaryotic initiation factor 2α and c-Jun NH2-terminal kinase 2 phosphorylation, and decreased expression of Pepck. CONCLUSIONS/INTERPRETATION Inducible liver-specific PTP1B knockdown reverses glucose intolerance and improves lipid homeostasis in HFD-fed obese and insulin-resistant adult mice. This suggests that knockdown of liver PTP1B in individuals who are already obese/insulin resistant may have relatively rapid, beneficial therapeutic effects

    Activation of Protein Kinase A and Exchange Protein Directly Activated by cAMP Promotes Adipocyte Differentiation of Human Mesenchymal Stem Cells

    Get PDF
    Human mesenchymal stem cells are primary multipotent cells capable of differentiating into several cell types including adipocytes when cultured under defined in vitro conditions. In the present study we investigated the role of cAMP signaling and its downstream effectors, protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac) in adipocyte conversion of human mesenchymal stem cells derived from adipose tissue (hMADS). We show that cAMP signaling involving the simultaneous activation of both PKA- and Epac-dependent signaling is critical for this process even in the presence of the strong adipogenic inducers insulin, dexamethasone, and rosiglitazone, thereby clearly distinguishing the hMADS cells from murine preadipocytes cell lines, where rosiglitazone together with dexamethasone and insulin strongly promotes adipocyte differentiation. We further show that prostaglandin I2 (PGI2) may fully substitute for the cAMP-elevating agent isobutylmethylxanthine (IBMX). Moreover, selective activation of Epac-dependent signaling promoted adipocyte differentiation when the Rho-associated kinase (ROCK) was inhibited. Unlike the case for murine preadipocytes cell lines, long-chain fatty acids, like arachidonic acid, did not promote adipocyte differentiation of hMADS cells in the absence of a PPARγ agonist. However, prolonged treatment with the synthetic PPARδ agonist L165041 promoted adipocyte differentiation of hMADS cells in the presence of IBMX. Taken together our results emphasize the need for cAMP signaling in concert with treatment with a PPARγ or PPARδ agonist to secure efficient adipocyte differentiation of human hMADS mesenchymal stem cells

    PKA and Epac cooperate to augment bradykinin-induced interleukin-8 release from human airway smooth muscle cells

    Get PDF
    Background: Airway smooth muscle contributes to the pathogenesis of pulmonary diseases by secreting inflammatory mediators such as interleukin-8 (IL-8). IL-8 production is in part regulated via activation of G(q)-and G(s)-coupled receptors. Here we study the role of the cyclic AMP (cAMP) effectors protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac1 and Epac2) in the bradykinin-induced IL-8 release from a human airway smooth muscle cell line and the underlying molecular mechanisms of this response.Methods: IL-8 release was assessed via ELISA under basal condition and after stimulation with bradykinin alone or in combination with fenoterol, the Epac activators 8-pCPT-2'-O-Me-cAMP and Sp-8-pCPT-2'-O-Me-cAMPS, the PKA activator 6-Bnz-cAMP and the cGMP analog 8-pCPT-2'-O-Me-cGMP. Where indicated, cells were pre-incubated with the pharmacological inhibitors Clostridium difficile toxin B-1470 (GTPases), U0126 (extracellular signal-regulated kinases ERK1/2) and Rp-8-CPT-cAMPS (PKA). The specificity of the cyclic nucleotide analogs was confirmed by measuring phosphorylation of the PKA substrate vasodilator-stimulated phosphoprotein. GTP-loading of Rap1 and Rap2 was evaluated via pull-down technique. Expression of Rap1, Rap2, Epac1 and Epac2 was assessed via western blot. Downregulation of Epac protein expression was achieved by siRNA. Unpaired or paired two-tailed Student's t test was used.Results: The beta(2)-agonist fenoterol augmented release of IL-8 by bradykinin. The PKA activator 6-Bnz-cAMP and the Epac activator 8-pCPT-2'-O-Me-cAMP significantly increased bradykinin-induced IL-8 release. The hydrolysis-resistant Epac activator Sp-8-pCPT-2'-O-Me-cAMPS mimicked the effects of 8-pCPT-2'-O-Me-cAMP, whereas the negative control 8-pCPT-2'-O-Me-cGMP did not. Fenoterol, forskolin and 6-Bnz-cAMP induced VASP phosphorylation, which was diminished by the PKA inhibitor Rp-8-CPT-cAMPS. 6-Bnz-cAMP and 8-pCPT-2'-O-Me-cAMP induced GTP-loading of Rap1, but not of Rap2. Treatment of the cells with toxin B-1470 and U0126 significantly reduced bradykinin-induced IL-8 release alone or in combination with the activators of PKA and Epac. Interestingly, inhibition of PKA by Rp-8-CPT-cAMPS and silencing of Epac1 and Epac2 expression by specific siRNAs largely decreased activation of Rap1 and the augmentation of bradykinin-induced IL-8 release by both PKA and Epac.Conclusion: Collectively, our data suggest that PKA, Epac1 and Epac2 act in concert to modulate inflammatory properties of airway smooth muscle via signaling to the Ras-like GTPase Rap1 and to ERK1/2.</p

    Tetracycline Inducible Gene Manipulation in Serotonergic Neurons

    Get PDF
    The serotonergic (5-HT) neuronal system has important and diverse physiological functions throughout development and adulthood. Its dysregulation during development or later in adulthood has been implicated in many neuropsychiatric disorders. Transgenic animal models designed to study the contribution of serotonergic susceptibility genes to a pathological phenotype should ideally allow to study candidate gene overexpression or gene knockout selectively in serotonergic neurons at any desired time during life. For this purpose, conditional expression systems such as the tet-system are preferable. Here, we generated a transactivator (tTA) mouse line (TPH2-tTA) that allows temporal and spatial control of tetracycline (Ptet) controlled transgene expression as well as gene deletion in 5-HT neurons. The tTA cDNA was inserted into a 196 kb PAC containing a genomic mouse Tph2 fragment (177 kb) by homologous recombination in E. coli. For functional analysis of Ptet-controlled transgene expression, TPH2-tTA mice were crossed to a Ptet-regulated lacZ reporter line (Ptet-nLacZ). In adult double-transgenic TPH2-tTA/Ptet-nLacZ mice, TPH2-tTA founder line L62-20 showed strong serotonergic β-galactosidase expression which could be completely suppressed with doxycycline (Dox). Furthermore, Ptet-regulated gene expression could be reversibly activated or inactivated when Dox was either withdrawn or added to the system. For functional analysis of Ptet-controlled, Cre-mediated gene deletion, TPH2-tTA mice (L62-20) were crossed to double transgenic Ptet-Cre/R26R reporter mice to generate TPH2-tTA/Ptet-Cre/R26R mice. Without Dox, 5-HT specific recombination started at E12.5. With permanent Dox administration, Ptet-controlled Cre-mediated recombination was absent. Dox withdrawal either postnatally or during adulthood induced efficient recombination in serotonergic neurons of all raphe nuclei, respectively. In the enteric nervous system, recombination could not be detected. We generated a transgenic mouse tTA line (TPH2-tTA) which allows both inducible and reversible transgene expression and inducible Cre-mediated gene deletion selectively in 5-HT neurons throughout life. This will allow precise delineation of serotonergic gene functions during development and adulthood

    Hemmung der Kern- und Chloroplastenmigration vonMicrasterias durch Colchizin

    No full text

    Effect of selenium on thioredoxin reductase activity in Txnrd1 or Txnrd2 hemizygous mice.

    No full text
    Thioredoxin reductase 1 (Txnrd1) and thioredoxin reductase 2 (Txnrd2) are selenoproteins whose expression and function depends on adequate supply of the trace element selenium (Se). As homozygous (-/-) knockout of both Txnrd1 and Txnrd2 is embryonically lethal, we investigated the effect of their hemizygosity (+/-) alone and in combination with dietary Se on enzymatic activity in various tissues. To assess the overall health of the corresponding mice, the growth, viability and fertility of the different experimental groups were also compared. Se depletion led to a marked decrease in Se organ contents. Se depletion was most prominent in lung, followed by liver, kidney, heart, muscle and brain. We found no major effect of Txnrd1 or Txnrd2 hemizygosity and/or Se on male fertility and the viability of offspring. A gene dose effect under Se-adequate conditions for Txnrd1 and Txnrd2 in all organs was observed. Haploid insufficiency decreased Txnrd activity to an extent that can be further decreased by Se deficiency, but not to levels below those observed for Se depletion alone. The only exception was Txnrd2 activity in kidney, heart and muscle, where we found an additive effect
    • …
    corecore