6 research outputs found
Valence-band orbital character of CdO: A synchrotron-radiation photoelectron spectroscopy and density functional theory study
N-type CdO is a transparent conducting oxide (TCO) which has promise in a number of areas including solar cell applications. In order to realize this potential a detailed knowledge of the electronic structure of the material is essential. In particular, standard density functional theory (DFT) methods struggle to accurately predict fundamental material properties such as the band gap. This is largely due to the underestimation of the Cd 4d binding energy, which results in a strong hybridization with the valence-band (VB) states. In order to test theoretical approaches, comparisons to experiment need to be made. Here, synchrotron-radiation photoelectron spectroscopy (SR-PES) measurements are presented, and comparison with three theoretical approaches are made. In particular the position of the Cd 4d state is measured with hard x-ray PES, and the orbital character of the VB is probed by photon energy dependent measurements. It is found that LDA + U using a theoretical U value of 2.34 eV is very successful in predicting the position of the Cd 4d state. The VB photon energy dependence reveals the O 2p photoionization cross section is underestimated at higher photon energies, and that an orbital contribution from Cd 5p is underestimated by all the DFT approaches. © 2014 American Physical Society
Surface electronic properties of In-rich InGaN alloys grown by MOCVD
The band bending, position of Fermi level at the cleaned surfaces and bulk Fermi level of In-rich InxGa1-xN alloys grown by metal-organic chemical vapor deposition with a composition of 0.20 ≤ x ≤ 1.00 have been investigated using X-ray photoemission spectroscopy, infrared reflectivity and Hall effect measurements. Wet etching of InxGa1-xN alloys in HCl successfully reduced the native oxides at the surface, allowing these measurements to be performed more accurately. Electron accumulation layers, accompanied by downward band bending, are present at the surface, with a decrease to flatband conditions occurring at x ≈ 0.2 with increasing Ga fraction. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Hard x-ray photoelectron spectroscopy as a probe of the intrinsic electronic properties of CdO
Hard x-ray photoelectron spectroscopy (HAXPES) is used to investigate the intrinsic electronic properties of single crystal epitaxial CdO(100) thin films grown by metal organic vapor phase epitaxy (MOVPE). The reduced surface sensitivity of the HAXPES technique relaxes stringent surface preparation requirements, thereby allowing the measurement of as-grown samples with intrinsically higher carrier concentration (n=2.4×1020cm-3). High-resolution HAXPES spectra of the valence band and core levels measured at photon energy of 6054 eV are presented. The effects of conduction band filling and band gap renormalization are discussed to explain the observed binding energy shifts. The measured bandwidth of the partially occupied conduction band feature indicates that a plasmon contribution may be present at higher carrier concentrations. The Cd 3d5/2 and O 1s core-level line shapes are found to exhibit an increased asymmetry with increased carrier concentration, interpreted as evidence for final state screening effects from the carriers in the conduction band. Alternatively the core-level line shape is interpreted as arising from strong conduction electron plasmon satellites. The nature of these two competing models to describe core-level line shapes in metallic oxides is explored. © 2014 American Physical Society
Pinning effect on the band gap modulation of crystalline Be xZn1-xO alloy films grown on Al2O 3(0001)
We have investigated the influence of Be concentration on the microstructure of BexZn1-xO ternary films (from x = 0 to 0.77), grown on Al2O3(0001) substrates using radio-frequency co-sputtering. With increasing Be concentration, the (0002) X-ray diffraction peak shows a systematic shift from 33.86° to 39.39°, and optical spectroscopy shows a blue-shift of the band gap from 3.24 to beyond 4.62 eV towards the deep UV regime, indicating that Be atoms are incorporated into the host ZnO lattice. During the band-gap modulation, structural fluctuations (e.g. phase separation and compositional fluctuation of Be) in the ternary films were observed along with a significant change in the mean grain size. X-ray photoelectron spectroscopy indicates higher concentrations of metallic Be states found in the film with the smaller grain size. Correlation between these two observations indicates that Be segregates to near grain boundaries. A model structure is proposed through simulation, where an increase in grain growth driving force dominates over the Be particle pinning effect. This leads to further coalescence of grains, reactivation of grain growth, and the uniform distribution of Be composition in the BexZn 1-xO alloy films. © 2014 The Royal Society of Chemistry
Valence-band density of states and surface electron accumulation in epitaxial SnO2 films
The surface band bending and electronic properties of SnO2(101) films grown on r-sapphire by plasma-assisted molecular beam epitaxy have been studied by Fourier-transform infrared spectroscopy (FTIR), x-ray photoemission spectroscopy (XPS), Hall effect, and electrochemical capacitance-voltage measurements. The XPS results were correlated with density functional theory calculation of the partial density of states in the valence-band and semicore levels. Good agreement was found between theory and experiment with a small offset of the Sn 4d levels. Homogeneous Sb-doped SnO2 films allowed for the calculation of the bulk Fermi level with respect to the conduction-band minimum within the k·p carrier statistics model. The band bending and carrier concentration as a function of depth were obtained from the capacitance-voltage characteristics and model space charge calculations of the Mott-Schottky plots at the surface of Sb-doped SnO2 films. It was quantitatively demonstrated that SnO2 films have downward band bending and surface electron accumulation. The surface band bending, unoccupied donor surface-state density, and width of the accumulation region all decrease with increasing Sb concentration
Recrystallization of highly-mismatched BexZn1-xO alloys: Formation of a degenerate interface
We investigate the effect of thermally induced phase transformations on a metastable oxide alloy film, a multiphase BexZn1-xO (BZO), grown on Al2O3(0001) substrate for annealing temperatures in the range of 600-950 °C. A pronounced structural transition is shown together with strain relaxation and atomic redistribution in the annealed films. Increasing annealing temperature initiates out-diffusion and segregation of Be and subsequent nucleation of nanoparticles at the surface, corresponding to a monotonic decrease in the lattice phonon energies and band gap energy of the films. Infrared reflectance simulations identify a highly conductive ZnO interface layer (thicknesses in the range of ≈10-29 nm for annealing temperatures ≥800 °C). The highly degenerate interface layers with temperature-independent carrier concentration and mobility significantly influence the electronic and optical properties of the BZO films. A parallel conduction model is employed to determine the carrier concentration and conductivity of the bulk and interface regions. The density-of-states-averaged effective mass of the conduction electrons for the interfaces is calculated to be in the range of 0.31m0 and 0.67m0. A conductivity as high as 1.4 × 103 S·cm-1 is attained, corresponding to the carrier concentration nInt = 2.16 × 1020 cm-3 at the interface layers, and comparable to the highest conductivities achieved in highly doped ZnO. The origin of such a nanoscale degenerate interface layer is attributed to the counter-diffusion of Be and Zn, rendering a high accumulation of Zn interstitials and a giant reduction of charge-compensating defects. These observations provide a broad understanding of the thermodynamics and phase transformations in BexZn1-xO alloys for the application of highly conductive and transparent oxide-based devices and fabrication of their alloy nanostructures