911 research outputs found

    Lepidoptera Recorded From the Islands of Western Lake Erie, With a Brief Account of Geology and Flora

    Get PDF
    A list of Lepidoptera from the islands of western Lake Erie is presented along with a brief account of the geology, flora, and human activities in the area. The checklist contains 169 species representing 27 families. Suggestions are made for the improvement of this preliminary checklist as well as for future research

    Chandra observations of the HII complex G5.89-0.39 and TeV gamma-ray source HESSJ1800-240B

    Full text link
    We present the results of our investigation, using a Chandra X-ray observation, into the stellar population of the massive star formation region G5.89-0.39, and its potential connection to the coincident TeV gamma-ray source HESSJ1800-240B. G5.89-0.39 comprises two separate HII regions G5.89-0.39A and G5.89-0.39B (an ultra-compact HII region). We identified 159 individual X-ray point sources in our observation using the source detection algorithm \texttt{wavdetect}. 35 X-ray sources are associated with the HII complex G5.89-0.39. The 35 X-ray sources represent an average unabsorbed luminosity (0.3-10\,keV) of ∼1030.5\sim10^{30.5}\,erg/s, typical of B7-B5 type stars. The potential ionising source of G5.89-0.39B known as Feldt's star is possibly identified in our observation with an unabsorbed X-ray luminosity suggestive of a B7-B5 star. The stacked energy spectra of these sources is well-fitted with a single thermal plasma APEC model with kT∼\sim5\,keV, and column density NH=2.6×1022_{\rm H}=2.6\times10^{22}\,cm−2^{-2} (AV∼10_{\rm V}\sim 10). The residual (source-subtracted) X-ray emission towards G5.89-0.39A and B is about 30\% and 25\% larger than their respective stacked source luminosities. Assuming this residual emission is from unresolved stellar sources, the total B-type-equivalent stellar content in G5.89-0.39A and B would be 75 stars, consistent with an earlier estimate of the total stellar mass of hot stars in G5.89-0.39. We have also looked at the variability of the 35 X-ray sources in G5.89-0.39. Ten of these sources are flagged as being variable. Further studies are needed to determine the exact causes of the variability, however the variability could point towards pre-main sequence stars. Such a stellar population could provide sufficient kinetic energy to account for a part of the GeV to TeV gamma-ray emission in the source HESSJ1800-240B.Comment: 34 pages, 9 figure

    INTEGRAL observations of TeV plerions

    Full text link
    Amongst the sources seen in very high gamma-rays several are associated with Pulsar Wind Nebulae (``TeV plerions''). The study of hard X-ray/soft gamma-ray emission is providing an important insight into the energetic particle population present in these objects. The unpulsed emission from pulsar/pulsar wind nebula systems in the energy range accessible to the INTEGRAL satellite is mainly synchrotron emission from energetic and fast cooling electrons close to their acceleration site. Our analyses of public INTEGRAL data of known TeV plerions detected by ground based Cherenkov telescopes indicate a deeper link between these TeV plerions and INTEGRAL detected pulsar wind nebulae. The newly discovered TeV plerion in the northern wing of the Kookaburra region (G313.3+0.6 powered by the middle aged PSR J1420-6048) is found to have a previously unknown INTEGRAL counterpart which is besides the Vela pulsar the only middle aged pulsar detected with INTEGRAL. We do not find an INTEGRAL counterpart of the TeV plerion associated with the X-ray PWN ``Rabbit'' G313.3+0.1 which is possibly powered by a young pulsar.Comment: 4 pages, 6 figures, proceedings of conference "The Multi-Messenger Approach to High-Energy Gamma-ray Sources" Barcelona/Spain (2006

    Spectral evolution of non-thermal electron distributions in intense radiation fields

    Full text link
    (abridged) Models of many astrophysical gamma-ray sources assume they contain a homogeneous distribution of electrons that are injected as a power-law in energy and evolve by interacting with radiation fields, magnetic fields and particles in the source and by escaping. This problem is particularly complicated if the radiation fields have higher energy density than the magnetic field and are sufficiently energetic that inverse Compton scattering is not limited to the Thomson regime. We present a simple, time-dependent, semi-analytical solution of the electron kinetic equation that treats both continuous and impulsive injection, cooling via synchrotron and inverse Compton radiation, (taking into account Klein-Nishina effects) and energy dependent particle escape. The kinetic equation for an arbitrary, time-dependent source function is solved by the method of Laplace transformations. Using an approximate expression for the energy loss rate that takes into account synchrotron and inverse Compton losses including Klein-Nishina effects for scattering off an isotropic photon field with either a power-law or black-body distribution, we find explicit expressions for the cooling time and escape probability of individual electrons. This enables the full, time-dependent solution to be reduced to a single quadrature. From the electron distribution, we then construct the time-dependent, multi-wavelength emission spectrum. We compare our solutions with several limiting cases and discuss the general appearance and temporal behaviour of spectral features (i.e., cooling breaks, bumps etc.). As a specific example, we model the broad-band energy spectrum of the open stellar association Westerlund-2 at different times of its evolution, and compare it with observations.Comment: 14 pages, 8 figures, acccepted for publication in A&

    XMM-Newton observations of HESS J1813-178 reveal a composite Supernova remnant

    Get PDF
    We present X-ray and 12CO(J=1-0) observations of the very-high-energy (VHE) gamma-ray source HESS J1813-178 with the aim of understanding the origin of the gamma-ray emission. Using this dataset we are able to undertake spectral and morphological studies of the X-ray emission from this object with greater precision than previous studies. NANTEN 12CO(J=1-0) data are used to search for correlations of the gamma-ray emission with molecular clouds which could act as target material for gamma-ray production in a hadronic scenario. The NANTEN 12CO(J=1-0) observations show a giant molecular cloud of mass 2.5 10^5 M_{\sun} at a distance of 4 kpc in the vicinity of HESS J1813-178. Even though there is no direct positional coincidence, this giant cloud might have influenced the evolution of the gamma-ray source and its surroundings. The X-ray data show a highly absorbed non-thermal X-ray emitting object coincident with the previously known ASCA source AX J1813-178 showing a compact core and an extended tail towards the north-east, located in the centre of the radio shell-type Supernova remnant (SNR) G12.82-0.2. This central object shows morphological and spectral resemblance to a Pulsar Wind Nebula (PWN) and we therefore consider that the object is very likely to be a composite SNR. We discuss the scenario in which the gamma-rays originate in the shell of the SNR and the one in which they originate in the central object. We demonstrate, that in order to connect the core X-ray emission to the VHE gamma-ray emission electrons have to be accelerated to energies of at least 1 PeV.Comment: Submitted to A&

    Radio continuum and near-infrared study of the MGRO J2019+37 region

    Get PDF
    (abridged) MGRO J2019+37 is an unidentified extended source of VHE gamma-rays originally reported by the Milagro Collaboration as the brightest TeV source in the Cygnus region. Its extended emission could be powered by either a single or several sources. The GeV pulsar AGL J2020.5+3653, discovered by AGILE and associated with PSR J2021+3651, could contribute to the emission from MGRO J2019+37, although extrapolation of the GeV spectrum does not explain the detected multi-TeV flux. Our aim is to identify radio and NIR sources in the field of the extended TeV source MGRO J2019+37, and study potential counterparts that could contribute to its emission. We surveyed a region of about 6 square degrees with the Giant Metrewave Radio Telescope (GMRT) at the frequency 610 MHz. We also observed the central square degree of this survey in the NIR Ks-band using the 3.5 m telescope in Calar Alto. Archival X-ray observations of some specific fields are included. VLBI observations of an interesting radio source were performed. We explored possible scenarios to produce the multi-TeV emission from MGRO J2019+37 and studied which of the sources could be the main particle accelerator. We present a catalogue of 362 radio sources detected with the GMRT in the field of MGRO J2019+37, and the results of a cross-correlation of this catalog with one obtained at NIR wavelengths, as well as with available X-ray observations of the region. Some peculiar sources inside the ~1 degree uncertainty region of the TeV emission from MGRO J2019+37 are discussed in detail, including the pulsar PSR J2021+3651 and its pulsar wind nebula PWN G75.2+0.1, two new radio-jet sources, the HII region Sh 2-104 containing two star clusters, and the radio source NVSS J202032+363158.Comment: 10 pages, 6 figures, 2 tables, accepted for publication in Astronomy and Astrophysic

    Radio continuum and near-infrared study of the MGRO J2019+37 region

    Get PDF
    (abridged) MGRO J2019+37 is an unidentified extended source of VHE gamma-rays originally reported by the Milagro Collaboration as the brightest TeV source in the Cygnus region. Its extended emission could be powered by either a single or several sources. The GeV pulsar AGL J2020.5+3653, discovered by AGILE and associated with PSR J2021+3651, could contribute to the emission from MGRO J2019+37, although extrapolation of the GeV spectrum does not explain the detected multi-TeV flux. Our aim is to identify radio and NIR sources in the field of the extended TeV source MGRO J2019+37, and study potential counterparts that could contribute to its emission. We surveyed a region of about 6 square degrees with the Giant Metrewave Radio Telescope (GMRT) at the frequency 610 MHz. We also observed the central square degree of this survey in the NIR Ks-band using the 3.5 m telescope in Calar Alto. Archival X-ray observations of some specific fields are included. VLBI observations of an interesting radio source were performed. We explored possible scenarios to produce the multi-TeV emission from MGRO J2019+37 and studied which of the sources could be the main particle accelerator. We present a catalogue of 362 radio sources detected with the GMRT in the field of MGRO J2019+37, and the results of a cross-correlation of this catalog with one obtained at NIR wavelengths, as well as with available X-ray observations of the region. Some peculiar sources inside the ~1 degree uncertainty region of the TeV emission from MGRO J2019+37 are discussed in detail, including the pulsar PSR J2021+3651 and its pulsar wind nebula PWN G75.2+0.1, two new radio-jet sources, the HII region Sh 2-104 containing two star clusters, and the radio source NVSS J202032+363158.Comment: 10 pages, 6 figures, 2 tables, accepted for publication in Astronomy and Astrophysic

    An unidentified TeV source in the vicinity of Cygnus OB2

    Get PDF
    Deep observation (∼113 hrs) of the Cygnus region at TeV energies using the HEGRA stereoscopic system of air Čerenkov telescopes has serendipitously revealed a signal positionally inside the core of the OB association Cygnus OB2, at the edge of the 95% error circle of the EGRET source 3EG J2033+4118, and ∼0.5° north of Cyg X-3. The source centre of gravity is RA αJ2000: 20hr32m07s± 9.2stats±2.2syss, Dec δJ2000: +41°30′30″2.0stat±0.4′sys. The source is steady, has a post-trial significance of +4.6σ, indication for extension with radius 5.6′ at the ∼3σ level, and has a differential power-law flux with hard photon index of - 1.9 ± 0.3stat ± 0.3sys. The integral flux above 1 TeV amounts ∼3% that of the Crab. No counterpart for the TeV source at other wavelengths is presently identified, and its extension would disfavour an exclusive pulsar or AGN origin. If associated with Cygnus OB2, this dense concentration of young, massive stars provides an environment conducive to multi-TeV particle acceleration and likely subsequent interaction with a nearby gas cloud. Alternatively, one could envisage γ-ray production via a jet-driven termination shock.F. A. Aharonian, ... G. P. Rowell, ... [et al
    • …
    corecore