579 research outputs found
Resonances for the Laplacian on products of two rank one Riemannian symmetric spaces
Let be a direct product of two rank-one Riemannian
symmetric spaces of the noncompact type. We show that when at least one of the
two spaces is isomorphic to a real hyperbolic space of odd dimension, the
resolvent of the Laplacian of can be lifted to a holomorphic function on a
Riemann surface which is a branched covering of . In all other
cases, the resolvent of the Laplacian of admits a singular meromorphic
lift. The poles of this function are called the resonances of the Laplacian. We
determine all resonances and show that the corresponding residue operators are
given by convolution with spherical functions parameterized by the resonances.
The ranges of these operators are finite dimensional and explicitly realized as
direct sums of finite-dimensional irreducible spherical representations of the
group of the isometries of
Relativistic Chasles' theorem and the conjugacy classes of the inhomogeneous Lorentz group
This work is devoted to the relativistic generalization of Chasles' theorem,
namely to the proof that every proper orthochronous isometry of Minkowski
spacetime, which sends some point to its chronological future, is generated
through the frame displacement of an observer which moves with constant
acceleration and constant angular velocity. The acceleration and angular
velocity can be chosen either aligned or perpendicular, and in the latter case
the angular velocity can be chosen equal or smaller than than the acceleration.
We start reviewing the classical Euler's and Chasles' theorems both in the Lie
algebra and group versions. We recall the relativistic generalization of
Euler's theorem and observe that every (infinitesimal) transformation can be
recovered from information of algebraic and geometric type, the former being
identified with the conjugacy class and the latter with some additional
geometric ingredients (the screw axis in the usual non-relativistic version).
Then the proper orthochronous inhomogeneous Lorentz Lie group is studied in
detail. We prove its exponentiality and identify a causal semigroup and the
corresponding Lie cone. Through the identification of new Ad-invariants we
classify the conjugacy classes, and show that those which admit a causal
representative have special physical significance. These results imply a
classification of the inequivalent Killing vector fields of Minkowski spacetime
which we express through simple representatives. Finally, we arrive at the
mentioned generalization of Chasles' theorem.Comment: Latex2e, 49 pages. v2: few typos correcte
Future asymptotic expansions of Bianchi VIII vacuum metrics
Bianchi VIII vacuum solutions to Einstein's equations are causally
geodesically complete to the future, given an appropriate time orientation, and
the objective of this article is to analyze the asymptotic behaviour of
solutions in this time direction. For the Bianchi class A spacetimes, there is
a formulation of the field equations that was presented in an article by
Wainwright and Hsu, and in a previous article we analyzed the asymptotic
behaviour of solutions in these variables. One objective of this paper is to
give an asymptotic expansion for the metric. Furthermore, we relate this
expansion to the topology of the compactified spatial hypersurfaces of
homogeneity. The compactified spatial hypersurfaces have the topology of
Seifert fibred spaces and we prove that in the case of NUT Bianchi VIII
spacetimes, the length of a circle fibre converges to a positive constant but
that in the case of general Bianchi VIII solutions, the length tends to
infinity at a rate we determine.Comment: 50 pages, no figures. Erronous definition of Seifert fibred spaces
correcte
- …