207 research outputs found
Interpretation of the Veiling of the Photospheric Spectrum for T Tauri Stars in Terms of an Accretion Model
The problem on heating the atmospheres of T Tauri stars by radiation from an
accretion shock has been solved. The structure and radiation spectrum of the
emerging so-called hot spot have been calculated in the LTE approximation. The
emission not only in continuum but also in lines has been taken into account
for the first time when calculating the spot spectrum. Comparison with
observations has shown that the strongest of these lines manifest themselves as
narrow components of helium and metal emission lines, while the weaker ones
decrease significantly the depth of photospheric absorption lines, although
until now, this effect has been thought to be due to the emission continuum
alone. The veiling by lines changes the depth of different photospheric lines
to a very different degree even within a narrow spectral range. Therefore, the
nonmonotonic wavelength dependence of the degree of veiling r found for some
CTTS does not suggest a nontrivial spectral energy distribution of the veiling
continuum. In general, it makes sense to specify the degree of veiling r only
by providing the set of photospheric lines from which this quantity was
determined. We show that taking into account the contribution of lines to the
veiling of the photospheric spectrum can cause the existing estimates of the
accretion rate onto T Tauri stars to decrease by several times, with this being
also true for stars with a comparatively weakly veiled spectrum. Neglecting the
contribution of lines to the veiling can also lead to appreciable errors in
determining the effective temperature, interstellar extinction, radial
velocity, and vsin(i)
Arthritis of the base of the thumb
The purpose of this article is to outline the pathophysiology and epidemiology of arthritis of the base of the thumb. The usual presentation and diagnosis will be discussed along with the current conservative treatment options. Surgical treatment options are determined by the stage of the arthritis as well as the demands of the patient. The current standard surgical treatment options will be reviewed along with their results in the literature
Control of star formation by supersonic turbulence
Understanding the formation of stars in galaxies is central to much of modern
astrophysics. For several decades it has been thought that stellar birth is
primarily controlled by the interplay between gravity and magnetostatic
support, modulated by ambipolar diffusion. Recently, however, both
observational and numerical work has begun to suggest that support by
supersonic turbulence rather than magnetic fields controls star formation. In
this review we outline a new theory of star formation relying on the control by
turbulence. We demonstrate that although supersonic turbulence can provide
global support, it nevertheless produces density enhancements that allow local
collapse. Inefficient, isolated star formation is a hallmark of turbulent
support, while efficient, clustered star formation occurs in its absence. The
consequences of this theory are then explored for both local star formation and
galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28
figures, in pres
Stochastic De-repression of Rhodopsins in Single Photoreceptors of the Fly Retina
The photoreceptors of the Drosophila compound eye are a classical model for studying cell fate specification. Photoreceptors (PRs) are organized in bundles of eight cells with two major types – inner PRs involved in color vision and outer PRs involved in motion detection. In wild type flies, most PRs express a single type of Rhodopsin (Rh): inner PRs express either Rh3, Rh4, Rh5 or Rh6 and outer PRs express Rh1. In outer PRs, the K50 homeodomain protein Dve is a key repressor that acts to ensure exclusive Rh expression. Loss of Dve results in de-repression of Rhodopsins in outer PRs, and leads to a wide distribution of expression levels. To quantify these effects, we introduce an automated image analysis method to measure Rhodopsin levels at the single cell level in 3D confocal stacks. Our sensitive methodology reveals cell-specific differences in Rhodopsin distributions among the outer PRs, observed over a developmental time course. We show that Rhodopsin distributions are consistent with a two-state model of gene expression, in which cells can be in either high or basal states of Rhodopsin production. Our model identifies a significant role of post-transcriptional regulation in establishing the two distinct states. The timescale for interconversion between basal and high states is shown to be on the order of days. Our results indicate that even in the absence of Dve, the Rhodopsin regulatory network can maintain highly stable states. We propose that the role of Dve in outer PRs is to buffer against rare fluctuations in this network
Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers
We present a review of the interplay between the evolution of circumstellar
disks and the formation of planets, both from the perspective of theoretical
models and dedicated observations. Based on this, we identify and discuss
fundamental questions concerning the formation and evolution of circumstellar
disks and planets which can be addressed in the near future with optical and
infrared long-baseline interferometers. Furthermore, the importance of
complementary observations with long-baseline (sub)millimeter interferometers
and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics
Review"; The final publication is available at http://www.springerlink.co
Comparative Phylogeography in a Specific and Obligate Pollination Antagonism
In specific and obligate interactions the nature and abundance of a given species can have important effects on the survival and population dynamics of associated organisms. In a phylogeographic framework, we therefore expect that the fates of organisms interacting specifically are also tightly interrelated. Here we investigate such a scenario by analyzing the genetic structures of species interacting in an obligate plant-insect pollination lure-and-trap antagonism, involving Arum maculatum (Araceae) and its specific psychodid (Diptera) visitors Psychoda phalaenoides and Psycha grisescens. Because the interaction is asymmetric (i.e., only the plant depends on the insect), we expect the genetic structure of the plant to be related with the historical pollinator availability, yielding incongruent phylogeographic patterns between the interacting organisms
Non-Centered Spike-Triggered Covariance Analysis Reveals Neurotrophin-3 as a Developmental Regulator of Receptive Field Properties of ON-OFF Retinal Ganglion Cells
The functional separation of ON and OFF pathways, one of the fundamental features of the visual system, starts in the retina. During postnatal development, some retinal ganglion cells (RGCs) whose dendrites arborize in both ON and OFF sublaminae of the inner plexiform layer transform into RGCs with dendrites that monostratify in either the ON or OFF sublamina, acquiring final dendritic morphology in a subtype-dependent manner. Little is known about how the receptive field (RF) properties of ON, OFF, and ON-OFF RGCs mature during this time because of the lack of a reliable and efficient method to classify RGCs into these subtypes. To address this deficiency, we developed an innovative variant of Spike Triggered Covariance (STC) analysis, which we term Spike Triggered Covariance – Non-Centered (STC-NC) analysis. Using a multi-electrode array (MEA), we recorded the responses of a large population of mouse RGCs to a Gaussian white noise stimulus. As expected, the Spike-Triggered Average (STA) fails to identify responses driven by symmetric static nonlinearities such as those that underlie ON-OFF center RGC behavior. The STC-NC technique, in contrast, provides an efficient means to identify ON-OFF responses and quantify their RF center sizes accurately. Using this new tool, we find that RGCs gradually develop sensitivity to focal stimulation after eye opening, that the percentage of ON-OFF center cells decreases with age, and that RF centers of ON and ON-OFF cells become smaller. Importantly, we demonstrate for the first time that neurotrophin-3 (NT-3) regulates the development of physiological properties of ON-OFF center RGCs. Overexpression of NT-3 leads to the precocious maturation of RGC responsiveness and accelerates the developmental decrease of RF center size in ON-OFF cells. In summary, our study introduces STC-NC analysis which successfully identifies subtype RGCs and demonstrates how RF development relates to a neurotrophic driver in the retina
Genomic Data Reveal Toxoplasma gondii Differentiation Mutants Are Also Impaired with Respect to Switching into a Novel Extracellular Tachyzoite State
Toxoplasma gondii pathogenesis includes the invasion of host cells by extracellular parasites, replication of intracellular tachyzoites, and differentiation to a latent bradyzoite stage. We present the analysis of seven novel T. gondii insertional mutants that do not undergo normal differentiation to bradyzoites. Microarray quantification of the variation in genome-wide RNA levels for each parasite line and times after induction allowed us to describe states in the normal differentiation process, to analyze mutant lines in the context of these states, and to identify genes that may have roles in initiating the transition from tachyzoite to bradyzoite. Gene expression patterns in wild-type parasites undergoing differentiation suggest a novel extracellular state within the tachyzoite stage. All mutant lines exhibit aberrant regulation of bradyzoite gene expression and notably some of the mutant lines appear to exhibit high proportions of the intracellular tachyzoite state regardless of whether they are intracellular or extracellular. In addition to the genes identified by the insertional mutagenesis screen, mixture model analysis allowed us to identify a small number of genes, in mutants, for which expression patterns could not be accounted for using the three parasite states – genes that may play a mechanistic role in switching from the tachyzoite to bradyzoite stage
Diversity in the Reproductive Modes of European Daphnia pulicaria Deviates from the Geographical Parthenogenesis
10 páginas, 5 figuras, 3 tablas.Background: Multiple transitions to obligate parthenogenesis have occurred in the Daphnia pulex complex in North
America. These newly formed asexual lineages are differentially distributed being found predominantly at high latitudes.
This conforms to the rule of geographical parthenogenesis postulating prevalence of asexuals at high latitudes and
altitudes. While the reproductive mode of high-latitude populations is relatively well studied, little is known about the
reproduction mode in high altitudes. This study aimed to assess the reproductive mode of Daphnia pulicaria, a species of
the D. pulex complex, from high altitude lakes in Europe.
Methodology/Principal Findings: Variation at eight microsatellite loci revealed that D. pulicaria from the High Tatra
Mountains (HTM) had low genotype richness and showed excess of heterozygotes and significant deviations from Hardy-
Weinberg expectations, and was thus congruent with reproduction by obligate parthenogenesis. By contrast, populations
from the Pyrenees (Pyr) were generally in Hardy-Weinberg equilibrium and had higher genotypic richness, suggesting that
they are cyclic parthenogens. Four lakes from lowland areas (LLaP) had populations with an uncertain or mixed breeding
mode. All D. pulicaria had mtDNA ND5 haplotypes of the European D. pulicaria lineage. Pyr were distinct from LLaP and
HTM at the ND5 gene. By contrast, HTM shared two haplotypes with LLaP and one with Pyr. Principal Coordinate Analysis of
the microsatellite data revealed clear genetic differentiation into three groups. HTM isolates were intermediate to Pyr and
LLaP, congruent with a hybrid origin.
Conclusion/Significance: Inferred transitions to obligate parthenogenesis have occurred only in HTM, most likely as a result
of hybridizations. In contrast to North American populations, these transitions do not appear to involve meiosis suppressor
genes and have not been accompanied by polyploidy. The absence of obligate parthenogenesis in Pyr, an environment
highly similar to the HTM, may be due to the lack of opportunities for hybridization.Peer reviewe
- …