199 research outputs found

    Low-Thrust Control of a Lunar Mapping Orbit

    Get PDF
    A method is presented for generating and maintaining a lunar mapping orbit using continuous low-thrust hardware. Optimal control theory is used to maintain a lunar orbit that is low-altitude, near-polar, and Sun-synchronous; three typical requirements for a successful lunar mapping mission. The analysis of the optimal control problem leads to the commonly seen two-point boundary value problem, which is solved using a simple indirect shooting algorithm. Simulations are presented for a 50-day mapping duration, in which it is shown that a very tight control is achieved with thrust levels below 1 N for a 1000 kg spacecraft. A straightforward approach for using the method presented to compute missions of any duration is also discussed

    Remote monitoring of biodynamic activity using electric potential sensors

    Get PDF
    Previous work in applying the electric potential sensor to the monitoring of body electrophysiological signals has shown that it is now possible to monitor these signals without needing to make any electrical contact with the body. Conventional electrophysiology makes use of electrodes which are placed in direct electrical contact with the skin. The electric potential sensor requires no cutaneous electrical contact, it operates by sensing the displacement current using a capacitive coupling. When high resolution body electrophysiology is required a strong (capacitive) coupling is used to maximise the collected signal. However, in remote applications where there is typically an air-gap between the body and the sensor only a weak coupling can be achieved. In this paper we demonstrate that the electric potential sensor can be successfully used for the remote sensing and monitoring of bioelectric activity. We show examples of heart-rate measurements taken from a seated subject using sensors mounted in the chair. We also show that it is possible to monitor body movements on the opposite side of a wall to the sensor. These sensing techniques have biomedical applications for non-contact monitoring of electrophysiological conditions and can be applied to passive through-the-wall surveillance systems for security applications

    Signal specific electric potential sensors for operation in noisy environments

    Get PDF
    Limitations on the performance of electric potential sensors are due to saturation caused by environmental electromagnetic noise. The work described involves tailoring the response of the sensors to reject the main components of the noise, thereby enhancing both the effective dynamic range and signal to noise. We show that by using real-time analogue signal processing it is possible to detect a human heartbeat at a distance of 40 cm from the front of a subject in an unshielded laboratory. This result has significant implications both for security sensing and biometric measurements in addition to the more obvious safety related applications

    Crustal fingering facilitates free-gas methane migration through the hydrate stability zone

    Get PDF
    Widespread seafloor methane venting has been reported in many regions of the world oceans in the past decade. Identifying and quantifying where and how much methane is being released into the ocean remains a major challenge and a critical gap in assessing the global carbon budget and predicting future climate [C. Ruppel, J. D. Kessler. Rev. Geophys. 55, 126–168 (2017)]. Methane hydrate (CH₄⋅5.75H₂O) is an ice-like solid that forms from methane–water mixture under elevated-pressure and low-temperature conditions typical of the deep marine settings (>600-m depth), often referred to as the hydrate stability zone (HSZ). Wide-ranging field evidence indicates that methane seepage often coexists with hydrate-bearing sediments within the HSZ, suggesting that hydrate formation may play an important role during the gas-migration process. At a depth that is too shallow for hydrate formation, existing theories suggest that gas migration occurs via capillary invasion and/or initiation and propagation of fractures (Fig. 1). Within the HSZ, however, a theoretical mechanism that addresses the way in which hydrate formation participates in the gas-percolation process is missing. Here, we study, experimentally and computationally, the mechanics of gas percolation under hydrate-forming conditions. We uncover a phenomenon—crustal fingering—and demonstrate how it may control methane-gas migration in ocean sediments within the HSZ

    Random-phase approximation and its applications in computational chemistry and materials science

    Full text link
    The random-phase approximation (RPA) as an approach for computing the electronic correlation energy is reviewed. After a brief account of its basic concept and historical development, the paper is devoted to the theoretical formulations of RPA, and its applications to realistic systems. With several illustrating applications, we discuss the implications of RPA for computational chemistry and materials science. The computational cost of RPA is also addressed which is critical for its widespread use in future applications. In addition, current correction schemes going beyond RPA and directions of further development will be discussed.Comment: 25 pages, 11 figures, published online in J. Mater. Sci. (2012

    Robust theoretical modelling of core ionisation edges for quantitative electron energy loss spectroscopy of B- and N-doped graphene

    Get PDF
    Electron energy loss spectroscopy (EELS) is a powerful tool for understanding the chemical structure of materials down to the atomic level, but challenges remain in accurately and quantitatively modelling the response. We compare comprehensive theoretical density functional theory (DFT) calculations of 1s core-level EEL K-edge spectra of pure, B-doped and N-doped graphene with and without a core-hole to previously published atomic-resolution experimental electron microscopy data. The ground state approximation is found in this specific system to perform consistently better than the frozen core-hole approximation. The impact of including or excluding a core-hole on the resultant theoretical band structures, densities of states, electron densities and EEL spectra were all thoroughly examined and compared. It is concluded that the frozen core-hole approximation exaggerates the effects of the core-hole in graphene and should be discarded in favour of the ground state approximation. These results are interpreted as an indicator of the overriding need for theorists to embrace many-body effects in the pursuit of accuracy in theoretical spectroscopy instead of a system-tailored approach whose approximations are selected empirically
    corecore