12 research outputs found

    The Preliminary Study of Pesticide Mospilan Effect on the GSTP1 Gene Methylation in Bovine Lymphocytes

    No full text
    The epigenetic mechanisms represent a dynamic, reversible and heritable manner modulating gene expression during the life cycle of an animal organism. They generate the specific epigenetic marks which constitute so-called epigenome. One of the most studied epigenetic mechanisms/marks is DNA methylation which is, similarly as the whole epigenome, susceptible to environmental and nutritional influences. The aberrations of the DNA methylation profile may alter gene expression leading to pathologic consequences. Pesticides along with their pest-reducing effects may also negatively affect non-target organisms. In our preliminary study, we investigated an effect of the pesticide Mospilan on the DNA methylation of the bovine GSTP1 gene which plays an important role in the cell detoxification processes. The specific primers for the GSTP1 Methylation-specific PCR (MSP) analysis were proposed and tested with the DNA from the Mospilan-treated bovine lymphocytes. It seems that the pesticide with the concentration of 100 µg.ml−1 did not induce DNA methylation changes in GSTP1 gene in bovine lymphocytes

    Genetic diversity and reproductive biology in ecotypes of the facultative apomict Hypericum perforatum L.

    No full text
    Apomixis is a mode of asexual reproduction through seed. Progeny produced by apomixis are clonal replicas of a mother plant. The essential feature of apomixis is that embryo sacs and embryos are produced in ovules without meiotic reduction or egg cell fertilisation. Thus, apomixis fixes successful gene combinations and propagates high fitness genotypes across generations. A more profound knowledge of the mechanisms that regulate reproductive events in plants would contribute fundamentally to understanding the evolution and genetic control of apomixis. Molecular markers were used to determine levels of genetic variation within and relationship among ecotypes of the facultative apomict Hypericum perforatum L. (2n=4x=32). All ecotypes were polyclonal, being not dominated by a single genotype, and characterised by different levels of differentiation among multilocus genotypes. Flow cytometric analysis of seeds indicated that all ecotypes were facultatively apomictic, with varying degrees of apomixis and sexuality. Seeds set by haploid parthenogenesis and/or by fertilisation of aposporic egg cells were detected in most populations. The occurrence of both dihaploids and hexaploids indicates that apospory and parthenogenesis may be developmentally uncoupled and supports two distinct genetic factors controlling apospory and parthenogenesis in this species. Cyto-embryological analysis showed that meiotic and aposporic processes do initiate within the same ovule: the aposporic initial often appeared evident at the time of megaspore mother cell differentiation. Our observations suggest that the egg cell exists in an active metabolic state before pollination, and that its parthenogenetic activation leading to embryo formation may occur before fertilisation and endosperm initiation
    corecore