30,060 research outputs found

    Quantum criticality in the pseudogap Bose-Fermi Anderson and Kondo models: Interplay between fermion- and boson-induced Kondo destruction

    Full text link
    We address the phenomenon of critical Kondo destruction in pseudogap Bose-Fermi Anderson and Kondo quantum impurity models. These models describe a localized level coupled both to a fermionic bath having a density of states that vanishes like |\epsilon|^r at the Fermi energy (\epsilon=0) and, via one component of the impurity spin, to a bosonic bath having a sub-Ohmic spectral density proportional to |\omega|^s. Each bath is capable by itself of suppressing the Kondo effect at a continuous quantum phase transition. We study the interplay between these two mechanisms for Kondo destruction using continuous-time quantum Monte Carlo for the pseudogap Bose-Fermi Anderson model with 0<r<1/2 and 1/2<s<1, and applying the numerical renormalization-group to the corresponding Kondo model. At particle-hole symmetry, the models exhibit a quantum critical point between a Kondo (fermionic strong-coupling) phase and a localized (Kondo-destroyed) phase. The two solution methods, which are in good agreement in their domain of overlap, provide access to the many-body spectrum, as well as to correlation functions including, in particular, the single-particle Green's function and the static and dynamical local spin susceptibilities. The quantum-critical regime exhibits the hyperscaling of critical exponents and \omega/T scaling in the dynamics that characterize an interacting critical point. The (r,s) plane can be divided into three regions: one each in which the calculated critical properties are dominated by the bosonic bath alone or by the fermionic bath alone, and between these two regions, a third in which the bosonic bath governs the critical spin response but both baths influence the renormalization-group flow near the quantum critical point.Comment: 16 pages, 16 figures. Replaced with published version, added discussion of particle hole asymmetr

    Orientation and strain modulated electronic structures in puckered arsenene nanoribbons

    Full text link
    Orthorhombic arsenene was recently predicted as an indirect bandgap semiconductor. Here, we demonstrate that nanostructuring arsenene into nanoribbons can successfully transform the bandgap to be direct. It is found that direct bandgaps hold for narrow armchair but wide zigzag nanoribbons, which is dominated by the competition between the in-plane and out-of-plane bondings. Moreover, straining the nanoribbons also induces a direct bandgap and simultaneously modulates effectively the transport property. The gap energy is largely enhanced by applying tensile strains to the armchair structures. In the zigzag ones, a tensile strain makes the effective mass of holes much higher while a compressive strain cause it much lower than that of electrons. Our results are crutial to understand and engineer the electronic properties of two dimensional materials beyond the planar ones like graphene

    Kosterlitz-Thouless Transition and Short Range Spatial Correlations in an Extended Hubbard Model

    Full text link
    We study the competition between intersite and local correlations in a spinless two-band extended Hubbard model by taking an alternative limit of infinite dimensions. We find that the intersite density fluctuations suppress the charge Kondo energy scale and lead to a Fermi liquid to non-Fermi liquid transition for repulsive on-site density-density interactions. In the absence of intersite interactions, this transition reduces to the known Kosterlitz-Thouless transition. We show that a new line of non-Fermi liquid fixed points replace those of the zero intersite interaction problem.Comment: 11 pages, 2 figure

    Continuous-Time Monte Carlo study of the pseudogap Bose-Fermi Kondo model

    Full text link
    We study the pseudogap Bose-Fermi Anderson model with a continuous-time quantum Monte Carlo (CT-QMC) method. We discuss some delicate aspects of the transformation from this model to the Bose-Fermi Kondo model. We show that the CT-QMC method can be used at sufficiently low temperatures to access the quantum critical properties of these models.Comment: SCES 2010 Proceeding
    • …
    corecore