336 research outputs found
Comparison of 2-D Magnetic Designs of Selected Coil Configurations for the Next European Dipole (NED)
The Next European Dipole (NED) activity is developing a high-performance NbSn wire (aiming at a non-copper critical current density of 1500 A/mm2 at 4.2 K and 15 T), within the framework of the Coordinated Accelerator Research in Europe (CARE) project. This activity is expected to lead to the fabrication of a large aperture, high field dipole magnet. In preparation for this phase, a Working Group on Magnet Design and Optimization (MDO) has been established to propose an optimal design. Other parallel Work Packages are concentrating on relevant topics, such as quench propagation simulation, innovative insulation techniques, and heat transfer measurements. In a first stage, the MDO Working Group has selected a number of coil configurations to be studied, together with salient parameters and features to be considered during the evaluation: the field quality, the superconductor efficiency, the conductor peak field, the stored magnetic energy, the Lorentz Forces and the fabrication difficulties. 2-D magnetic calculations have been performed, and the results of this comparison between the different topologies are presented in this paper. The 2-D mechanical computations are ongoing and the final stage will be 3-D magnetic and mechanical studies
Conceptual design of a nonscaling fixed field alternating gradient accelerator for protons and carbon ions for charged particle therapy
Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.The conceptual design for a nonscaling fixed field alternating gradient accelerator suitable for charged particle therapy (the use of protons and other light ions to treat some forms of cancer) is described.EPSR
Neurochemical characterization of brainstem Pro-opiomelanocortin cells
Financial Support: Work was supported by the Wellcome Trust (WT081713, WT098012 and 204815/Z/16/Z to LKH; 093566/Z/10/A to LKH/LKB), the Biotechnology and Biological Sciences Research Council (BB/K001418/1, BB/NO17838/1 to LKH), and the Medical Research Council (MRC; MC/PC/15077 to LKH). The Genomics and Transcriptomics Core facility utilized was supported by the MRC (MRC_MC_UU_12012/5) and Wellcome Trust (100574/Z/12/Z).Peer reviewedPublisher PD
SU(3) realization of the rigid asymmetric rotor within the IBM
It is shown that the spectrum of the asymmetric rotor can be realized quantum
mechanically in terms of a system of interacting bosons. This is achieved in
the SU(3) limit of the interacting boson model by considering higher-order
interactions between the bosons. The spectrum corresponds to that of a rigid
asymmetric rotor in the limit of infinite boson number.Comment: 9 pages, 2 figures, LaTeX, epsfi
Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells
We report a method of fabricating a high work function, solution processable vanadium oxide (V2Ox(sol)) hole-extracting layer. The atmospheric processing conditions of film preparation have a critical influence on the electronic structure and stoichiometry of the V2Ox(sol), with a direct impact on organic photovoltaic (OPV) cell performance. Combined Kelvin probe (KP) and ultraviolet photoemission spectroscopy (UPS) measurements reveal a high work function, n-type character for the thin films, analogous to previously reported thermally evaporated transition metal oxides. Additional states within the band gap of V2Ox(sol) are observed in the UPS spectra and are demonstrated using X-ray photoelectron spectroscopy (XPS) to be due to the substoichiometric nature of V2Ox(sol). The optimized V2Ox(sol) layer performance is compared directly to bare indium–tin oxide (ITO), poly(ethyleneoxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and thermally evaporated molybdenum oxide (MoOx) interfaces in both small molecule/fullerene and polymer/fullerene structures. OPV cells incorporating V2Ox(sol) are reported to achieve favorable initial cell performance and cell stability attributes
SU(3) symmetry breaking in lower fp-shell nuclei
Results of shell-model calculations for lower fp-shell nuclei show that SU(3)
symmetry breaking in this region is driven by the single-particle spin-orbit
splitting. However, even though states of the yrast band exhibit SU(3) symmetry
breaking, the results also show that the yrast band B(E2) values are
insensitive to this fragmentation of the SU(3) symmetry; specifically, the
quadrupole collectivity as measured by B(E2) transition strengths between low
lying members of the yrast band remain high even though SU(3) appears to be
broken. Results for and using the Kuo-Brown-3
two-body interaction are given to illustrate these observations.Comment: Updated to the published versio
Recommended from our members
Dementia as a disability: Implications for ethics, policy and practice. A Discussion Paper.
noPeople experience dementia in different ways, not just in terms of the type and severity of symptoms, but also in terms of how they react to and manage living with dementia. Increasingly, people with dementia are expressing a desire to get on with their everyday lives. They want to avoid being defined solely in relation to dementia and to continue to be considered as valued members of society. This is particularly important as the term dementia often has negative connotations. It is widely considered as a stigma. Neurological impairment may interfere with people’s ability to get on with their lives, as may differences in coping skills, financial resources, the emotional and psychological impact of dementia, and access to timely and good quality support. Reactions of relatives, friends and fellow citizens are also important, as well as society’s response to dementia. This was highlighted by Kitwood in the 1990s when he outlined what came to be known as the biopsychosocial model of dementia . There are also differences at the level of society, reflected in practices, attitudes and structures. These may, on the surface, seem fair or neutral (i.e. “that’s just the way it is”). In many cases, however, they reflect a lack of consideration and failure to act in a responsible, ethical and even legal way towards people with dementia...
In this report, we focus on the possible implications for ethics, policy and practice of raising awareness about the potential of framing dementia as a potential disability
Increased lipolysis and altered lipid homeostasis protect γ-synuclein–null mutant mice from diet-induced obesity
Synucleins are a family of homologous proteins principally known for their involvement in neurodegeneration. γ-Synuclein is highly expressed in human white adipose tissue and increased in obesity. Here we show that γ-synuclein is nutritionally regulated in white adipose tissue whereas its loss partially protects mice from high-fat diet (HFD)–induced obesity and ameliorates some of the associated metabolic complications. Compared with HFD-fed WT mice, HFD-fed γ-synuclein–null mutant mice display increased lipolysis, lipid oxidation, and energy expenditure, and reduced adipocyte hypertrophy. Knockdown of γ-synuclein in adipocytes causes redistribution of the key lipolytic enzyme ATGL to lipid droplets and increases lipolysis. γ-Synuclein–deficient adipocytes also contain fewer SNARE complexes of a type involved in lipid droplet fusion. We hypothesize that γ-synuclein may deliver SNAP-23 to the SNARE complexes under lipogenic conditions. Via these independent but complementary roles, γ-synuclein may coordinately modulate lipid storage by influencing lipolysis and lipid droplet formation. Our data reveal γ-synuclein as a regulator of lipid handling in adipocytes, the function of which is particularly important in conditions of nutrient excess
Loss of GPR75 protects against non-alcoholic fatty liver disease and body fat accumulation
Open Access via the Elsevier Agreement L.K.H. designed the experiments with input from F.M., G.S.H.Y., and J.J.R.; F.M. and J.I. created the CRISPR-Cas9-deleted Gpr75 mouse line with input from A.M.; A.L.-P., C.M., B.Y.H.L., G.K.C.D., N.S., P.B.M.d.M., R.C., K.K., E.J.G., J.R.B.P., F.G., J.R.S., and J.J.R. performed experiments and/or data analysis; D.T. provided reagents and intellectual contributions; and L.K.H. and A.L.-P. wrote the manuscript with input from all other authors.Peer reviewe
MICE: The muon ionization cooling experiment. Step I: First measurement of emittance with particle physics detectors
Copyright @ 2011 APSThe Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented.This work was supported by NSF grant PHY-0842798
- …