3 research outputs found

    Kinematic Control and Obstacle Avoidance for Soft Inflatable Manipulator

    Get PDF
    © Springer Nature Switzerland AG 2019. In this paper, we present a kinematic control and obstacle avoidance for the soft inflatable manipulator which combines pressure and tendons as an actuating mechanism. The position control and obstacle avoidance took inspiration from the phenomena of a magnetic field in nature. The redundancy in the manipulator combined with a planar mobile base is exploited to help the actuators stay under their maximum capability. The navigation algorithm is shown to outperform the potential-field-based navigation in its ability to smoothly and reactively avoid obstacles and reach the goal in simulation scenarios
    corecore