14 research outputs found

    Effect of modified atmosphere packaging (MAP) and UC-C irradiation on postharvest quality of red raspberries

    Get PDF
    Red raspberries (Rubus idaeus L.) are highly appreciated by consumers. However, their postharvest shelf life scarcely exceeds 5 d under the refrigeration temperatures usually applied during commercialization, due to their high susceptibility to dehydration, softening and rot incidence. Thus, the objective of this study was to investigate the ability of UV-C radiation (UV1: 2 kJ m-2 and UV2: 4 kJ m-2 ), passive modified atmosphere packaging (MAP) with transmission rates (TR) for O2 and CO2 of 1805 mL d-1 and 1570 mL d-1 (MAP1), and 902 mL d-1 and 785 mL d-1 (MAP2), respectively, and the combination of both technologies to prolong raspberries’ shelf life at 6¿ C. Their influence on respiration, physicochemical parameters, and microbiological and nutritional quality was assessed during 12 d of storage. The combination of 4 kJ m-2 UV-C radiation and a packaging film with O2 and CO2 transmission rates of 902 mL d-1 and 785 mL d-1, respectively, produced a synergistic effect against rot development, delaying senescence of the fruit. The UV2MAP2 and MAP2 samples only showed 1.66% rot incidence after 8 d of storage. The UV2MAP2 samples also had higher bioactive content (1.76 g kg-1 of gallic acid equivalents (GAE), 1.08 g kg-1 of catechin equivalents (CE) and 0.32 g kg-1 of cyanidin 3-O-glucoside equivalents (CGE)) than the control samples at the end of their shelf life. Moreover, the mass loss was minimal (0.56%), and fruit color and firmness were maintained during shelf life. However, the rest of the batches were not suitable for commercialization after 4 d due to excessive mold development. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG)

    No full text
    In April 2008, a nucleotide sequence-based, complete genome classification system was developed for group A rotaviruses (RVs). This system assigns a specific genotype to each of the 11 genome segments of a particular RV strain according to established nucleotide percent cut-off values. Using this approach, the genome of individual RV strains are given the complete descriptor of Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx. A Rotavirus Classification Working Group (RCWG) was formed by scientists in the field to maintain, evaluate, and develop the RV genotype classification system, in particular to aid in the designation of new genotypes. Since its conception, the group has ratified 50 new genotypes: as of January 2011, new genotypes for VP7 (G20–G26), VP4 (P[28]–P[35]), VP6 (I12–I16), VP1 (R5–R9), VP2 (C6–C9), VP3 (M7–M8), NSP1 (A15–A16), NSP2 (N6–N9), NSP3 (T8–T12), NSP4 (E12–E14), and NSP5/6 (H7–H11) have been defined for RV strains identified in humans, cows, pigs, horses, mice, South American camelids (guanaco and vicuña), chickens, turkeys, pheasants, and bats. With increasing numbers of complete RV genome sequences becoming available, a standardized RV strain nomenclature system is needed and the RCWG proposes that individual RV strains are named as follows: RV group/species of origin/country of identification/common name/year of identification/G- and P-type. In collaboration with the National Center for Biotechnology Information (NCBI), the RCWG is also working on developing a RV-specific resource for the deposition of nucleotide sequences. This resource will provide useful information regarding RV strains, including but not limited to, the individual gene genotypes, epidemiological, and clinical information. Together, the proposed nomenclature system and the NCBI RV resource will offer highly useful tools for investigators to search for, retrieve, and analyze the ever-growing volume of RV genomic data

    Una evaluación de las dinámicas psicosociales relacionadas con la organización terrorista ETA y la política antiterrorista del gobierno español entre 2004 y 2008

    No full text

    Clinical practice guidelines for the diagnosis and treatment of patients with soft tissue sarcoma by the Spanish group for research in sarcomas (GEIS)

    No full text
    Soft tissue sarcomas (STS) constitute an uncommon and heterogeneous group of tumours, which require a complex and specialized multidisciplinary management. The diagnostic approach should include imaging studies and core needle biopsy performed prior to undertaking surgery. Wide excision is the mainstay of treatment for localized sarcoma, and associated preoperative or postoperative radiotherapy should be administered in high-risk patients. Adjuvant chemotherapy was associated with a modest improvement in survival in a meta-analysis and constitutes a standard option in selected patients with high-risk STS. In metastatic patients, surgery must be evaluated in selected cases. In the rest of patients, chemotherapy and, in some subtypes, targeted therapy often used in a sequential strategy constitutes the treatment of election. Despite important advances in the understanding of the pathophysiology of the disease, the advances achieved in therapeutic results may be deemed still insufficient. Moreover, due to the rarity and complexity of the disease, the results in clinical practice are not always optimal. For this reason, the Spanish Group for Research on Sarcoma (GEIS) has developed a multidisciplinary clinical practice guidelines document, with the aim of facilitating the diagnosis and treatment of these patients in Spain. In the document, each practical recommendation is accompanied by level of evidence and grade of recommendation on the basis of the available data
    corecore