314 research outputs found

    TREX-DM: a low background Micromegas-based TPC for low mass WIMP detection

    Get PDF
    Dark Matter experiments are recently focusing their detection techniques in low-mass WIMPs, which requires the use of light elements and low energy threshold. In this context, we present the TREX-DM experiment, a low background Micromegas-based TPC for low-mass WIMP detection. Its main goal is the operation of an active detection mass \sim0.300 kg, with an energy threshold below 0.4 keVee and fully built with previously selected radiopure materials. This article describes the actual setup, the first results of the comissioning in Ar+2\%iC4_4H10_{10} at 1.2 bar and the future updates for a possible physics run at the Canfranc Underground Laboratory in 2016. A first background model is also presented, based on Geant4 simulations and a muon/electron discrimination method. In a conservative scenario, TREX-DM could be sensitive to DAMA/LIBRA and other hints of positive WIMPs signals, with some space for improvement with a neutron/electron discrimination method or the use of other light gases.Comment: Proceedings of the 7th Symposium on Large TPCs for Low-Energy Rare Event Detectio

    Kinetic study of nordihydroguaiaretic acid recovery from Larrea tridentata by microwave-assisted extraction

    Get PDF
    Nordihydroguaiaretic acid (NDGA) is a powerful antioxidant that can be found in plants like Larrea tridentata (Zygophyllaceae), also known as creosote bush, which grows in semidesert areas of Southwestern United States and Northern Mexico [1]. Several studies have demonstrated that NDGA has important biological activities with great interest in the health area, such as antiviral, cancer chemopreventive, and antitumorgenic activities [2]. Extraction of bioactive compounds from plants is conventionally performed using a heat‐reflux extraction method. However, different techniques have been developed in order to decrease extraction time and solvent consumption, as well as to increase the extraction yield and enhance the extracts quality [3]. The objective of this study was to develop a microwave‐assisted extraction (MAE) method for NDGA recovery from Larrea tridentata leaves, and compare the obtained results with those found by using the conventional heat‐reflux extraction (HRE)

    Analyses of chondrogenic induction of adipose mesenchymal stem cells by combined co-stimulation mediated by adenoviral gene transfer

    Get PDF
    INTRODUCTION: Adipose-derived stem cells (ASCs) have the potential to differentiate into cartilage under stimulation with some reported growth and transcriptional factors, which may constitute an alternative for cartilage replacement approaches. In this study, we analyzed the in vitro chondrogenesis of ASCs transduced with adenoviral vectors encoding insulin-like growth factor-1 (IGF-1), transforming growth factor beta-1 (TGF-β1), fibroblast growth factor-2 (FGF-2), and sex-determining region Y-box 9 (SOX9) either alone or in combinations. METHODS: Aggregate cultures of characterized ovine ASCs were transduced with 100 multiplicity of infections of Ad.IGF-1, Ad.TGF-β1, Ad.FGF-2, and Ad.SOX9 alone or in combination. These were harvested at various time points for detection of cartilage-specific genes expression by quantitative real-time PCR or after 14 and 28 days for histologic and biochemical analyses detecting proteoglycans, collagens (II, I and X), and total sulfated glycosaminoglycan and collagen content, respectively. RESULTS: Expression analyses showed that co-expression of IGF-1 and FGF-2 resulted in higher significant expression levels of aggrecan, biglycan, cartilage matrix, proteoglycan, and collagen II (all P ≤0.001 at 28 days). Aggregates co-transduced with Ad.IGF-1/Ad.FGF-2 showed a selective expression of proteoglycans and collagen II, with limited expression of collagens I and × demonstrated by histological analyses, and had significantly greater glycosaminoglycan and collagen production than the positive control (P ≤0.001). Western blot analyses for this combination also demonstrated increased expression of collagen II, while expression of collagens I and × was undetectable and limited, respectively. CONCLUSION: Combined overexpression of IGF-1/FGF-2 within ASCs enhances their chondrogenic differentiation inducing the expression of chondrogenic markers, suggesting that this combination is more beneficial than the other factors tested for the development of cell-based therapies for cartilage repair

    Lowering the background level and the energy threshold of Micromegas x-ray detectors for axion searches

    Full text link
    Axion helioscopes search for solar axions by their conversion in x-rays in the presence of high magnetic fields. The use of low background x-ray detectors is an essential component contributing to the sensitivity of these searches. In this work, we review the recent advances on Micromegas detectors used in the CERN Axion Solar Telescope (CAST) and proposed for the future International Axion Observatory (IAXO). The actual setup in CAST has achieved background levels below 106^{-6} keV1^{-1} cm2^{-2} s1^{-1}, a factor 100 lower than the first generation of Micromegas detectors. This reduction is based on active and passive shielding techniques, the selection of radiopure materials, offline discrimination techniques and the high granularity of the readout. We describe in detail the background model of the detector, based on its operation at CAST site and at the Canfranc Underground Laboratory (LSC), as well as on Geant4 simulations. The best levels currently achieved at LSC are low than 107^{-7} keV1^{-1} cm2^{-2} s1^{-1} and show good prospects for the application of this technology in IAXO. Finally, we present some ideas and results for reducing the energy threshold of these detectors below 1 keV, using high-transparent windows, autotrigger electronics and studying the cluster shape at different energies. As a high flux of axion-like-particles is expected in this energy range, a sub-keV threshold detector could enlarge the physics case of axion helioscopes.Comment: Proceedings of 3rd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2014

    4-1BBL as a Mediator of Cross-Talk between Innate, Adaptive, and Regulatory Immunity against Cancer

    Get PDF
    The ability of tumor cells to evade the immune system is one of the main challenges we confront in the fight against cancer. Multiple strategies have been developed to counteract this situation, including the use of immunostimulant molecules that play a key role in the anti-tumor immune response. Such a response needs to be tumor-specific to cause as little damage as possible to healthy cells and also to track and eliminate disseminated tumor cells. Therefore, the combination of immunostimulant molecules and tumor-associated antigens has been implemented as an antitumor therapy strategy to eliminate the main obstacles confronted in conventional therapies. The immunostimulant 4-1BBL belongs to the tumor necrosis factor (TNF) family and it has been widely reported as the most effective member for activating lymphocytes. Hence, we will review the molecular, pre-clinical, and clinical applications in conjunction with tumor-associated antigens in antitumor immunotherapy, as well as the main molecular pathways involved in this association

    Identification of viral infections in the prostate and evaluation of their association with cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several viruses with known oncogenic potential infect prostate tissue, among these are the polyomaviruses BKV, JCV, and SV40; human papillomaviruses (HPVs), and human cytomegalovirus (HCMV) infections. Recently, the Xenotropic Murine Leukemia Virus-related gammaretrovirus (XMRV) was identified in prostate tissue with a high prevalence observed in prostate cancer (PC) patients homozygous for the glutamine variant of the RNASEL protein (462Q/Q). Association studies with the R462Q allele and non-XMRV viruses have not been reported. We assessed associations between prostate cancer, prostate viral infections, and the RNASEL 462Q allele in Mexican cancer patients and controls.</p> <p>Methods</p> <p>130 subjects (55 prostate cancer cases and 75 controls) were enrolled in the study. DNA and RNA isolated from prostate tissues were screened for the presence of viral genomes. Genotyping of the RNASEL R462Q variant was performed by Taqman method.</p> <p>Results</p> <p>R/R, R/Q, and Q/Q frequencies for R462Q were 0.62, 0.38, and 0.0 for PC cases and 0.69, 0.24, and 0.07 for controls, respectively. HPV sequences were detected in 11 (20.0%) cases and 4 (5.3%) controls. XMRV and HCMV infections were detected in one and six control samples, respectively. The risk of PC was significantly increased (Odds Ratio = 3.98; 95% CI: 1.17-13.56, p = 0.027) by infection of the prostatic tissue with HPV. BKV, JCV, and SV40 sequences were not detected in any of the tissue samples examined.</p> <p>Conclusions</p> <p>We report a positive association between PC and HPV infection. The 462Q/Q RNASEL genotype was not represented in our PC cases; thus, its interaction with prostate viral infections and cancer could not be evaluated.</p

    Exploitation of Mexican agro industrial wastes as raw material for solid-state fermentation processes

    Get PDF
    Annually, large volumes of wastes are produced by food, agricultural and forestry industries, which if disposed cause serious environmental problems. Therefore, it is of great importance to find alternative ways to reuse them. Due to the composition rich in sugars, which due to their organic nature are easily assimilated by the microorganisms; such wastes could be appropriate for use as raw materials in the production of industrially-relevant compounds under solid-state fermentation (SSF) conditions. However, the physical-chemical and microbiological characteristics of the solid substrate affect the efficiency of the SSF process. In the present study, ten different agro industrial wastes derived from Mexican local regions were evaluated for use as raw material in SSF. The wastes included creosote bush leaves (Larrea tridentata), variegated Caribbean agave (Agave lechuguilla), lemon peel (Citrus aurantifolia), orange peel (Citrus sinensis), apple pomace (Malus domestica), pistachio shell (Pistacia vera), wheat bran (Triticum spp.), coconut husk (Cocos nucífera), pecan nutshell (Carya illinoinensis), and bean residues (Phaseolus vulgaris). All of them were physical-chemically and microbiologically characterized. Physical-chemical tests consisted in the determination of the critical humidity point (CHP) and the water absorption index (WAI), while the microbiological tests were based on the evaluation of Aspergillus niger Aa-20 growth rate in such materials. The study pointed out that coconut husk, apple pomace, lemon and orange peels have great potential to be successfully used as raw material in SSF, since they have low water content linked to the structure (that is ideal to easily adjust the water content according to the process to be used), and allowed good and fast microorganism growth. Their use in SSF would be an interesting alternative to add value to these residues besides to be of great economical advantage and an environmental-friendly way for waste management.info:eu-repo/semantics/publishedVersio
    corecore