9,002 research outputs found
Dehydration kinetics and thermochemistry of selected hydrous phases, and simulated gas release pattern in carbonaceous chondrites
As part of our continued program of study on the volatile bearing phases and volatile resource potential of carbonaceous chondrite, results of our experimental studies on the dehydration kinetics of talc as a function of temperature and grain size (50 to 0.5 microns), equilibrium dehydration boundary of talc to 40 kbars, calorimetric study of enthalpy of formation of both natural and synthetic talc as a function of grain size, and preliminary results on the dehydration kinetics of epsomite are reported. In addition, theoretical calculations on the gas release pattern of Murchison meteorite, which is a C2(CM) carbonaceous chondrite, were performed. The kinetic study of talc leads to a dehydration rate constant for 40-50 microns size fraction of k = (3.23 x 10(exp 4))exp(-Q/RT)/min with the activation energy Q = 376 (plus or minus 20) kJ/mole. The dehydration rate was found to increase somewhat with decreasing grain size. The enthalpy of formation of talc from elements was measured to be -5896(10) kJ/mol. There was no measurable effect of grain size on the enthalpy beyond the limits of precision of the calorimetric studies. Also the calorimetric enthalpy of both synthetic and natural talc was found to be essentially the same, within the precision of measurements, although the natural talc had a slightly larger field of stability in our phase equilibrium studies. The high pressure experimental data the dehydration equilibrium of talc (talc = enstatite + coesite + H2O) is in strong disagreement with that calculated from the available thermochemical data, which were constrained to fit the low pressure experimental results. The calculated gas release pattern of Murchison meteorite were in reasonable agreement with that determined by stepwise heating in a gas chromatograph
New supersymmetric partners for the associated Lame potentials
We obtain exact solutions of the one-dimensional Schrodinger equation for
some families of associated Lame potentials with arbitrary energy through a
suitable ansatz, which may be appropriately extended for other such a families.
The formalism of supersymmetric quantum mechanics is used to generate new
exactly solvable potentials.Comment: 8 pages, 2 figures, submitted on 24 November 2004 to Phys. Lett.
Exactly solvable associated Lame potentials and supersymmetric transformations
A systematic procedure to derive exact solutions of the associated Lame
equation for an arbitrary value of the energy is presented. Supersymmetric
transformations in which the seed solutions have factorization energies inside
the gaps are used to generate new exactly solvable potentials; some of them
exhibit an interesting property of periodicity defects.Comment: Annals of Phys.(in press); Present e-mail of AG:
[email protected]
Recommended from our members
Large-scale changes in cortical dynamics triggered by repetitive somatosensory electrical stimulation.
BackgroundRepetitive somatosensory electrical stimulation (SES) of forelimb peripheral nerves is a promising therapy; studies have shown that SES can improve motor function in stroke subjects with chronic deficits. However, little is known about how SES can directly modulate neural dynamics. Past studies using SES have primarily used noninvasive methods in human subjects. Here we used electrophysiological recordings from the rodent primary motor cortex (M1) to assess how SES affects neural dynamics at the level of single neurons as well as at the level of mesoscale dynamics.MethodsWe performed acute extracellular recordings in 7 intact adult Long Evans rats under ketamine-xylazine anesthesia while they received transcutaneous SES. We recorded single unit spiking and local field potentials (LFP) in the M1 contralateral to the stimulated arm. We then compared neural firing rate, spike-field coherence (SFC), and power spectral density (PSD) before and after stimulation.ResultsFollowing SES, the firing rate of a majority of neurons changed significantly from their respective baseline values. There was, however, a diversity of responses; some neurons increased while others decreased their firing rates. Interestingly, SFC, a measure of how a neuron's firing is coupled to mesoscale oscillatory dynamics, increased specifically in the δ-band, also known as the low frequency band (0.3- 4 Hz). This increase appeared to be driven by a change in the phase-locking of broad-spiking, putative pyramidal neurons. These changes in the low frequency range occurred without a significant change in the overall PSD.ConclusionsRepetitive SES significantly and persistently altered the local cortical dynamics of M1 neurons, changing both firing rates as well as the SFC magnitude in the δ-band. Thus, SES altered the neural firing and coupling to ongoing mesoscale dynamics. Our study provides evidence that SES can directly modulate cortical dynamics
Recommended from our members
A Rare Case of Hip Pain Secondary to Pigmented Villonodular Synovitis
A 19-year-old Asian male presented to our emergency department with atraumatic right hip pain radiating to the right groin associated with pain on ambulation. Magnetic resonance imaging of the right hip with and without contrast revealed the diagnosis. Pigmented villonodular synovitis is a rare, monoarticular benign tumor originating from the synovium of the joint. The treatment is synovectomy of the pathological joint to prevent further disease progression
Microphysical manifestations of viscosity and consequences for anisotropies in the very early universe
It has been known that a non-perfect fluid that accounts for dissipative viscous effects can evade a highly anisotropic chaotic mixmaster approach to a singularity. Viscosity is often simply parameterised in this context, so it remains unclear whether isotropisation can really occur in physically motivated contexts. We present a few examples of microphysical manifestations of viscosity in fluids that interact either gravitationally or, for a scalar field for instance, through a self-coupling term in the potential. In each case, we derive the viscosity coefficient and comment on the applicability of the approximations involved when dealing with dissipative non-perfect fluids. Upon embedding the fluids in a cosmological context, we then show the extent to which these models allow for isotropisation of the universe in the approach to a singularity. We first do this in the context of expansion anisotropy only, i.e., in the case of a Bianchi type-I universe. We then include anisotropic 3-curvature modelled by the Bianchi type-IX metric. It is found that a self-interacting scalar field at finite temperature allows for efficient isotropisation, whether in a Bianchi type-I or type-IX spacetime, although the model is not tractable all the way to a singularity. Mixmaster chaotic behaviour, which is well known to arise in anisotropic models including anisotropic 3-curvature, is found to be suppressed in the latter case as well. We find that the only model permitting an isotropic singularity is that of a dense gas of black holes
- …