5,350 research outputs found
Incompressible fluid inside an astrophysical black hole?
It is argued that under natural hypothesis the Fermions inside a black hole
formed after the collapse of a neutron star could form a non compressible fluid
(well before reaching the Planck scale) leading to some features of integer
Quantum Hall Effect. The relations with black hole entropy are analyzed.
Insights coming from Quantum Hall Effect are used to analyze the coupling with
Einstein equations. Connections with some cosmological scenarios and with
higher dimensional Quantum Hall Effect are shortly pointed out.Comment: 30 pages, 2 figures. Accepted for publication on Physical Review D:
references added, typos corrected, test polishe
A low-mass HI companion of NGC 1569?
High-sensitivity maps of the large-scale structure of atomic hydrogen in the
starburst dwarf galaxy NGC 1569 show evidence for an HI cloud with a mass of
7*10**6 M_sun, at a projected distance of 5 kpc from the parent galaxy. This
cloud may be a condensation in a low-column-density HI halo or a companion
galaxy/HI-cloud. NGC 1569 and its companion are connected by a low surface
brightness HI bridge. At the edge of NGC1569, the HI bridge coincides with
H_alpha arcs, also detected in soft X-rays.Comment: 5 pages, 4 figures, 1 tabl
HCN versus HCO+ as dense molecular gas mass tracer in Luminous Infrared Galaxies
It has been recently argued that the HCN J=1--0 line emission may not be an
unbiased tracer of dense molecular gas (\rm n\ga 10^4 cm^{-3}) in Luminous
Infrared Galaxies (LIRGs: ) and HCO J=1--0
may constitute a better tracer instead (Graci\'a-Carpio et al. 2006), casting
doubt into earlier claims supporting the former as a good tracer of such gas
(Gao & Solomon 2004; Wu et al. 2006). In this paper new sensitive HCN J=4--3
observations of four such galaxies are presented, revealing a surprisingly wide
excitation range for their dense gas phase that may render the J=1--0
transition from either species a poor proxy of its mass. Moreover the
well-known sensitivity of the HCO abundance on the ionization degree of the
molecular gas (an important issue omitted from the ongoing discussion about the
relative merits of HCN and HCO as dense gas tracers) may severely reduce
the HCO abundance in the star-forming and highly turbulent molecular gas
found in LIRGs, while HCN remains abundant. This may result to the decreasing
HCO/HCN J=1--0 line ratio with increasing IR luminosity found in LIRGs, and
casts doubts on the HCO rather than the HCN as a good dense molecular gas
tracer. Multi-transition observations of both molecules are needed to identify
the best such tracer, its relation to ongoing star formation, and constrain
what may be a considerable range of dense gas properties in such galaxies.Comment: 16 pages, 4 figures, Accepted for publication in the Astrophysical
Journa
Detection of Neutral Carbon in the M 31 Dark Cloud D478
Emission from the 492 GHz CI tranition was detected towards the dark cloud
D478 in M31. Using existing 12CO and 13CO measurements, models for the gas
properties of D478 are discussed. The observed CO and C line ratios can be
explained by two-component models (dense cores and tenuous envelopes);
single-density models appear less likely. The models indicate temperatures
T(kin) = 10 K. The beam-averaged C column density is 0.3 - 0.8 times that of
CO, whereas the total carbon to hydrogen ratio N(C)/N(H) = 5-3 times 10**-4.
The resulting CO-to-H2 conversion factor X is about half that of the Solar
Neighbourhood. With temperatures of about 10 K and projected mass densities of
5-10 M(sun)/pc**2 there appears to be no need to invoke the presence of very
cold and very massive clouds. Rather, D478 appears to be comparable to Milky
Way dark cloud complexes such as the Taurus-Auriga dark cloud complex.Comment: 7 Pages, 1 Figure; accepted by A&
Neutral carbon and CO in 76 (U)LIRGs and starburst galaxy centers A method to determine molecular gas properties in luminous galaxies
We present fluxes in both neutral carbon [CI] lines at the centers of 76
galaxies with FIR luminosities between 10^{9} and 10^{12} L(o) obtained with
Herschel-SPIRE and with ground-based facilities, along with the J=7-6, J=4-3,
J=2-1 12CO and J=2-1 13CO line fluxes. We investigate whether these lines can
be used to characterize the molecular ISM of the parent galaxies in simple ways
and how the molecular gas properties define the model results. In most
starburst galaxies, the [CI]/13CO flux ratio is much higher than in Galactic
star-forming regions, and it is correlated to the total FIR luminosity. The
[CI](1-0)/CO(4-3), the [CI](2-1) (2-1)/CO(7-6), and the [CI] (2-1)/(1-0) flux
ratios are also correlated, and trace the excitation of the molecular gas. In
the most luminous infrared galaxies (LIRGs), the ISM is fully dominated by
dense and moderately warm gas clouds that appear to have low [C]/[CO] and
[13CO]/[12CO] abundances. In less luminous galaxies, emission from gas clouds
at lower densities becomes progressively more important, and a multiple-phase
analysis is required to determine consistent physical characteristics. Neither
the CO nor the [CI] velocity-integrated line fluxes are good predictors of H2
column densities in individual galaxies, and X(CI) conversion factors are not
superior to X(CO) factors. The methods and diagnostic diagrams outlined in this
paper also provide a new and relatively straightforward means of deriving the
physical characteristics of molecular gas in high-redshift galaxies up to z=5,
which are otherwise hard to determine
The excitation of near-infrared H2 emission in NGC 253
Because of its large angular size and proximity to the Milky Way, NGC 253, an
archetypal starburst galaxy, provides an excellent laboratory to study the
intricacies of this intense episode of star formation. We aim to characterize
the excitation mechanisms driving the emission in NGC 253. Specifically we aim
to distinguish between shock excitation and UV excitation as the dominant
driving mechanism, using Br\gamma, H_2 and [FeII] as diagnostic emission line
tracers. Using SINFONI observations, we create linemaps of Br\gamma,
[FeII]_{1.64}, and all detected H_2 transitions. By using symmetry arguments of
the gas and stellar gas velocity field, we find a kinematic center in agreement
with previous determinations. The ratio of the 2-1 S(1) to 1-0 S(1) H_2
transitions can be used as a diagnostic to discriminate between shock and
fluorescent excitation. Using the 1-0 S(1)/2-1 S(1) line ratio as well as
several other H_2 line ratios and the morphological comparison between H_2 and
Br\gamma and [FeII], we find that excitation from UV photons is the dominant
excitation mechanisms throughout NGC 253. We employ a diagnostic energy level
diagram to quantitatively differentiate between mechanisms. We compare the
observed energy level diagrams to PDR and shock models and find that in most
regions and over the galaxy as a whole, fluorescent excitation is the dominant
mechanism exciting the H_2 gas. We also place an upper limit of the percentage
of shock excited H_2 at 29%. We find that UV radiation is the dominant
excitation mechanism for the H_2 emission. The H_2 emission does not correlate
well with Br\gamma but closely traces the PAH emission, showing that not only
is H_2 fluorescently excited, but it is predominately excited by slightly lower
mass stars than O stars which excite Br\gamma, such as B stars
The Nature of Radio Continuum Emission in the Dwarf Starburst Galaxy NGC 625
We present new multi-frequency radio continuum imaging of the dwarf starburst
galaxy NGC 625 obtained with the Very Large Array. Data at 20, 6, and 3.6 cm
reveal global continuum emission dominated by free-free emission, with only
mild synchrotron components. Each of the major HII regions is detected; the
individual spectral indices are thermal for the youngest regions (showing
strongest H Alpha emission) and nonthermal for the oldest. We do not detect any
sources that appear to be associated with deeply embedded, dense, young
clusters, though we have discovered one low-luminosity, obscured source that
has no luminous optical counterpart and which resides in the region of highest
optical extinction. Since NGC 625 is a Wolf-Rayet galaxy with strong recent
star formation, these radio properties suggest that the youngest star formation
complexes have not yet evolved to the point where their thermal spectra are
significantly contaminated by synchrotron emission. The nonthermal components
are associated with regions of older star formation that have smaller ionized
gas components. These results imply a range of ages of the HII regions and
radio components that agrees with our previous resolved stellar population
analysis, where an extended burst of star formation has pervaded the disk of
NGC 625 over the last ~ 50 Myr. We compare the nature of radio continuum
emission in selected nearby dwarf starburst and Wolf-Rayet galaxies,
demonstrating that thermal radio continuum emission appears to be more common
in these systems than in typical HII galaxies with less recent star formation
and more evolved stellar clusters.Comment: ApJ, in press; 27 pages, 5 figures. Full-resolution version may be
obtained at http://www.astro.umn.edu/~cannon/n625.vla.p
CO Emission in Low Luminosity, HI Rich Galaxies
We present 12CO 1-0 observations of eleven low luminosity M_B > -18),
HI--rich dwarf galaxies. Only the three most metal-rich galaxies, with
12+log(O/H) ~ 8.2, are detected. Very deep CO spectra of six extremely
metal-poor systems (12+log(O/H) < 7.5) yield only low upper limits on the CO
surface brightness, I_CO < 0.1 K km/s. Three of these six have never before
been observed in a CO line, while the others now have much more stringent upper
limits. For the very low metallicity galaxy Leo A, we do not confirm a
previously reported detection in CO, and the limits are consistent with another
recent nondetection. We combine these new observations with data from the
literature to form a sample of dwarf galaxies which all have CO observations
and measured oxygen abundances. No known galaxies with 12+log(O/H) < 7.9 (Z <
0.1 solar) have been detected in CO. Most of the star-forming galaxies with
higher (12+log(O/H) > 8.1) metallicities are detected at similar or higher I_CO
surface brightnesses. The data are consistent with a strong dependence of the
I_CO/M_H_2 = X_CO conversion factor on ambient metallicity. The strikingly low
upper limits on some metal-poor galaxies lead us to predict that the conversion
factor is non-linear, increasing sharply below approximately 1/10 of the solar
metallicity (12+log(O/H) < 7.9).Comment: 25 pages, 4 figures, 3 tables. Accepted for publication in AJ Tables
replaced -- now formated for landscape orientatio
The dust SED in the dwarf galaxy NGC 1569: Indications for an altered dust composition?
We discuss the interpretation of the dust SED from the mid-infrared to the
millimeter range of NGC 1569. The model developed by D\'esert et al. (1990)
including three dust components (Polyaromatic Hydrocarbons, Very Small Grains
and big grains) can explain the data using a realistic interstellar radiation
field and adopting an enhanced abundance of VSGs. A simple three-temperature
model is also able to reproduce the data but requires a very low dust
temperature which is considered to be unlikely in this low-metallicity
starburst galaxy. The high abundance of Very Small Grains might be due to large
grain destruction in supernova shocks. This possibility is supported by ISO
data showing that the emission at 14.3 m, tracing VSGs, is enhanced with
respect to the emission at 6.7 m and 850 m in regions of high star
formation.Comment: 4 pages, conference proceedings paper, "The Spectral Energy
Distribution of Gas-Rich Galaxies: Confronting Models with Data", Heidelberg,
4-8 Oct. 2004, eds. C.C. Popescu & R.J. Tuffs, AIP Conf. Ser., in pres
- …