5,350 research outputs found

    Incompressible fluid inside an astrophysical black hole?

    Full text link
    It is argued that under natural hypothesis the Fermions inside a black hole formed after the collapse of a neutron star could form a non compressible fluid (well before reaching the Planck scale) leading to some features of integer Quantum Hall Effect. The relations with black hole entropy are analyzed. Insights coming from Quantum Hall Effect are used to analyze the coupling with Einstein equations. Connections with some cosmological scenarios and with higher dimensional Quantum Hall Effect are shortly pointed out.Comment: 30 pages, 2 figures. Accepted for publication on Physical Review D: references added, typos corrected, test polishe

    A low-mass HI companion of NGC 1569?

    Get PDF
    High-sensitivity maps of the large-scale structure of atomic hydrogen in the starburst dwarf galaxy NGC 1569 show evidence for an HI cloud with a mass of 7*10**6 M_sun, at a projected distance of 5 kpc from the parent galaxy. This cloud may be a condensation in a low-column-density HI halo or a companion galaxy/HI-cloud. NGC 1569 and its companion are connected by a low surface brightness HI bridge. At the edge of NGC1569, the HI bridge coincides with H_alpha arcs, also detected in soft X-rays.Comment: 5 pages, 4 figures, 1 tabl

    HCN versus HCO+ as dense molecular gas mass tracer in Luminous Infrared Galaxies

    Get PDF
    It has been recently argued that the HCN J=1--0 line emission may not be an unbiased tracer of dense molecular gas (\rm n\ga 10^4 cm^{-3}) in Luminous Infrared Galaxies (LIRGs: LFIR>1011L⊙\rm L_{FIR}> 10^{11} L_{\odot}) and HCO+^+ J=1--0 may constitute a better tracer instead (Graci\'a-Carpio et al. 2006), casting doubt into earlier claims supporting the former as a good tracer of such gas (Gao & Solomon 2004; Wu et al. 2006). In this paper new sensitive HCN J=4--3 observations of four such galaxies are presented, revealing a surprisingly wide excitation range for their dense gas phase that may render the J=1--0 transition from either species a poor proxy of its mass. Moreover the well-known sensitivity of the HCO+^+ abundance on the ionization degree of the molecular gas (an important issue omitted from the ongoing discussion about the relative merits of HCN and HCO+^+ as dense gas tracers) may severely reduce the HCO+^+ abundance in the star-forming and highly turbulent molecular gas found in LIRGs, while HCN remains abundant. This may result to the decreasing HCO+^+/HCN J=1--0 line ratio with increasing IR luminosity found in LIRGs, and casts doubts on the HCO+^+ rather than the HCN as a good dense molecular gas tracer. Multi-transition observations of both molecules are needed to identify the best such tracer, its relation to ongoing star formation, and constrain what may be a considerable range of dense gas properties in such galaxies.Comment: 16 pages, 4 figures, Accepted for publication in the Astrophysical Journa

    Detection of Neutral Carbon in the M 31 Dark Cloud D478

    Get PDF
    Emission from the 492 GHz CI tranition was detected towards the dark cloud D478 in M31. Using existing 12CO and 13CO measurements, models for the gas properties of D478 are discussed. The observed CO and C line ratios can be explained by two-component models (dense cores and tenuous envelopes); single-density models appear less likely. The models indicate temperatures T(kin) = 10 K. The beam-averaged C column density is 0.3 - 0.8 times that of CO, whereas the total carbon to hydrogen ratio N(C)/N(H) = 5-3 times 10**-4. The resulting CO-to-H2 conversion factor X is about half that of the Solar Neighbourhood. With temperatures of about 10 K and projected mass densities of 5-10 M(sun)/pc**2 there appears to be no need to invoke the presence of very cold and very massive clouds. Rather, D478 appears to be comparable to Milky Way dark cloud complexes such as the Taurus-Auriga dark cloud complex.Comment: 7 Pages, 1 Figure; accepted by A&

    Neutral carbon and CO in 76 (U)LIRGs and starburst galaxy centers A method to determine molecular gas properties in luminous galaxies

    Get PDF
    We present fluxes in both neutral carbon [CI] lines at the centers of 76 galaxies with FIR luminosities between 10^{9} and 10^{12} L(o) obtained with Herschel-SPIRE and with ground-based facilities, along with the J=7-6, J=4-3, J=2-1 12CO and J=2-1 13CO line fluxes. We investigate whether these lines can be used to characterize the molecular ISM of the parent galaxies in simple ways and how the molecular gas properties define the model results. In most starburst galaxies, the [CI]/13CO flux ratio is much higher than in Galactic star-forming regions, and it is correlated to the total FIR luminosity. The [CI](1-0)/CO(4-3), the [CI](2-1) (2-1)/CO(7-6), and the [CI] (2-1)/(1-0) flux ratios are also correlated, and trace the excitation of the molecular gas. In the most luminous infrared galaxies (LIRGs), the ISM is fully dominated by dense and moderately warm gas clouds that appear to have low [C]/[CO] and [13CO]/[12CO] abundances. In less luminous galaxies, emission from gas clouds at lower densities becomes progressively more important, and a multiple-phase analysis is required to determine consistent physical characteristics. Neither the CO nor the [CI] velocity-integrated line fluxes are good predictors of H2 column densities in individual galaxies, and X(CI) conversion factors are not superior to X(CO) factors. The methods and diagnostic diagrams outlined in this paper also provide a new and relatively straightforward means of deriving the physical characteristics of molecular gas in high-redshift galaxies up to z=5, which are otherwise hard to determine

    The excitation of near-infrared H2 emission in NGC 253

    Full text link
    Because of its large angular size and proximity to the Milky Way, NGC 253, an archetypal starburst galaxy, provides an excellent laboratory to study the intricacies of this intense episode of star formation. We aim to characterize the excitation mechanisms driving the emission in NGC 253. Specifically we aim to distinguish between shock excitation and UV excitation as the dominant driving mechanism, using Br\gamma, H_2 and [FeII] as diagnostic emission line tracers. Using SINFONI observations, we create linemaps of Br\gamma, [FeII]_{1.64}, and all detected H_2 transitions. By using symmetry arguments of the gas and stellar gas velocity field, we find a kinematic center in agreement with previous determinations. The ratio of the 2-1 S(1) to 1-0 S(1) H_2 transitions can be used as a diagnostic to discriminate between shock and fluorescent excitation. Using the 1-0 S(1)/2-1 S(1) line ratio as well as several other H_2 line ratios and the morphological comparison between H_2 and Br\gamma and [FeII], we find that excitation from UV photons is the dominant excitation mechanisms throughout NGC 253. We employ a diagnostic energy level diagram to quantitatively differentiate between mechanisms. We compare the observed energy level diagrams to PDR and shock models and find that in most regions and over the galaxy as a whole, fluorescent excitation is the dominant mechanism exciting the H_2 gas. We also place an upper limit of the percentage of shock excited H_2 at 29%. We find that UV radiation is the dominant excitation mechanism for the H_2 emission. The H_2 emission does not correlate well with Br\gamma but closely traces the PAH emission, showing that not only is H_2 fluorescently excited, but it is predominately excited by slightly lower mass stars than O stars which excite Br\gamma, such as B stars

    The Nature of Radio Continuum Emission in the Dwarf Starburst Galaxy NGC 625

    Full text link
    We present new multi-frequency radio continuum imaging of the dwarf starburst galaxy NGC 625 obtained with the Very Large Array. Data at 20, 6, and 3.6 cm reveal global continuum emission dominated by free-free emission, with only mild synchrotron components. Each of the major HII regions is detected; the individual spectral indices are thermal for the youngest regions (showing strongest H Alpha emission) and nonthermal for the oldest. We do not detect any sources that appear to be associated with deeply embedded, dense, young clusters, though we have discovered one low-luminosity, obscured source that has no luminous optical counterpart and which resides in the region of highest optical extinction. Since NGC 625 is a Wolf-Rayet galaxy with strong recent star formation, these radio properties suggest that the youngest star formation complexes have not yet evolved to the point where their thermal spectra are significantly contaminated by synchrotron emission. The nonthermal components are associated with regions of older star formation that have smaller ionized gas components. These results imply a range of ages of the HII regions and radio components that agrees with our previous resolved stellar population analysis, where an extended burst of star formation has pervaded the disk of NGC 625 over the last ~ 50 Myr. We compare the nature of radio continuum emission in selected nearby dwarf starburst and Wolf-Rayet galaxies, demonstrating that thermal radio continuum emission appears to be more common in these systems than in typical HII galaxies with less recent star formation and more evolved stellar clusters.Comment: ApJ, in press; 27 pages, 5 figures. Full-resolution version may be obtained at http://www.astro.umn.edu/~cannon/n625.vla.p

    CO Emission in Low Luminosity, HI Rich Galaxies

    Full text link
    We present 12CO 1-0 observations of eleven low luminosity M_B > -18), HI--rich dwarf galaxies. Only the three most metal-rich galaxies, with 12+log(O/H) ~ 8.2, are detected. Very deep CO spectra of six extremely metal-poor systems (12+log(O/H) < 7.5) yield only low upper limits on the CO surface brightness, I_CO < 0.1 K km/s. Three of these six have never before been observed in a CO line, while the others now have much more stringent upper limits. For the very low metallicity galaxy Leo A, we do not confirm a previously reported detection in CO, and the limits are consistent with another recent nondetection. We combine these new observations with data from the literature to form a sample of dwarf galaxies which all have CO observations and measured oxygen abundances. No known galaxies with 12+log(O/H) < 7.9 (Z < 0.1 solar) have been detected in CO. Most of the star-forming galaxies with higher (12+log(O/H) > 8.1) metallicities are detected at similar or higher I_CO surface brightnesses. The data are consistent with a strong dependence of the I_CO/M_H_2 = X_CO conversion factor on ambient metallicity. The strikingly low upper limits on some metal-poor galaxies lead us to predict that the conversion factor is non-linear, increasing sharply below approximately 1/10 of the solar metallicity (12+log(O/H) < 7.9).Comment: 25 pages, 4 figures, 3 tables. Accepted for publication in AJ Tables replaced -- now formated for landscape orientatio

    The dust SED in the dwarf galaxy NGC 1569: Indications for an altered dust composition?

    Full text link
    We discuss the interpretation of the dust SED from the mid-infrared to the millimeter range of NGC 1569. The model developed by D\'esert et al. (1990) including three dust components (Polyaromatic Hydrocarbons, Very Small Grains and big grains) can explain the data using a realistic interstellar radiation field and adopting an enhanced abundance of VSGs. A simple three-temperature model is also able to reproduce the data but requires a very low dust temperature which is considered to be unlikely in this low-metallicity starburst galaxy. The high abundance of Very Small Grains might be due to large grain destruction in supernova shocks. This possibility is supported by ISO data showing that the emission at 14.3 ÎĽ\mum, tracing VSGs, is enhanced with respect to the emission at 6.7 ÎĽ\mum and 850 ÎĽ\mum in regions of high star formation.Comment: 4 pages, conference proceedings paper, "The Spectral Energy Distribution of Gas-Rich Galaxies: Confronting Models with Data", Heidelberg, 4-8 Oct. 2004, eds. C.C. Popescu & R.J. Tuffs, AIP Conf. Ser., in pres
    • …
    corecore