38 research outputs found

    VISTA Deficiency Attenuates Antibody-induced Arthritis and Alters Macrophage Gene Expression in Response to Simulated Immune Complexes

    Get PDF
    In addition to activated T cells, the immune checkpoint inhibitor “V domain-containing Ig suppressor of T-cell activation” (VISTA) is expressed by myeloid cell types, including macrophages and neutrophils. The importance of VISTA expression by myeloid cells to antibody-induced arthritis and its potential for relevance in human disease was evaluated. Methods: VISTA was immunolocalized in normal and arthritic human synovial tissue sections and synovial tissue lysates were subjected to western blot analysis. The collagen antibody-induced arthritis model (CAIA) was performed with DBA/1 J mice treated with antibodies against VISTA and with VISTA-deficient mice (V-KO). Total mRNA from arthritic joints, spleens, and cultured macrophages was analyzed with NanoString arrays. Cytokines secreted by splenic inflammatory macrophages were determined. In-vitro chemotaxis and signal transduction assays were performed with cultured macrophages. Results: VISTA protein was localized to synovial membrane cells, neutrophils, and scattered cells in lymphocyte-rich foci and was detected by western blot analysis in normal synovium and synovium from rheumatoid arthritis patients. Deficiency of VISTA or treatment of mice with anti-VISTA monoclonal antibodies attenuated CAIA. Joint damage and MMP-3 expression were significantly reduced in V-KO mice. Surface expression of C5a receptor was reduced on monocytes, neutrophils, and cultured macrophages from V-KO. Upon Fc receptor engagement in vitro, gene expression by V-KO macrophages was altered profoundly compared to WT, including a significant induction of IL-1 receptor antagonist (IL1rn). Conclusions: VISTA expression supports immune-complex inflammation in CAIA and VISTA is expressed in human synovium. VISTA supports optimal responses to C5a and modulates macrophage responses to immune complexes

    VISTA Deficiency Attenuates Antibody-induced Arthritis and Alters Macrophage Gene Expression in Response to Simulated Immune Complexes

    Get PDF
    In addition to activated T cells, the immune checkpoint inhibitor “V domain-containing Ig suppressor of T-cell activation” (VISTA) is expressed by myeloid cell types, including macrophages and neutrophils. The importance of VISTA expression by myeloid cells to antibody-induced arthritis and its potential for relevance in human disease was evaluated. Methods: VISTA was immunolocalized in normal and arthritic human synovial tissue sections and synovial tissue lysates were subjected to western blot analysis. The collagen antibody-induced arthritis model (CAIA) was performed with DBA/1 J mice treated with antibodies against VISTA and with VISTA-deficient mice (V-KO). Total mRNA from arthritic joints, spleens, and cultured macrophages was analyzed with NanoString arrays. Cytokines secreted by splenic inflammatory macrophages were determined. In-vitro chemotaxis and signal transduction assays were performed with cultured macrophages. Results: VISTA protein was localized to synovial membrane cells, neutrophils, and scattered cells in lymphocyte-rich foci and was detected by western blot analysis in normal synovium and synovium from rheumatoid arthritis patients. Deficiency of VISTA or treatment of mice with anti-VISTA monoclonal antibodies attenuated CAIA. Joint damage and MMP-3 expression were significantly reduced in V-KO mice. Surface expression of C5a receptor was reduced on monocytes, neutrophils, and cultured macrophages from V-KO. Upon Fc receptor engagement in vitro, gene expression by V-KO macrophages was altered profoundly compared to WT, including a significant induction of IL-1 receptor antagonist (IL1rn). Conclusions: VISTA expression supports immune-complex inflammation in CAIA and VISTA is expressed in human synovium. VISTA supports optimal responses to C5a and modulates macrophage responses to immune complexes

    Recombinase mediated cassette exchange into genomic targets using an adenovirus vector

    Get PDF
    Recombinase mediated cassette exchange (RMCE) is a process in which site-specific recombinases exchange one gene cassette flanked by a pair of incompatible target sites for another cassette flanked by an identical pair of sites. Typically one cassette is present in the host genome, whereas the other gene cassette is introduced into the host cell by chemical or biological means. We show here that the frequency of cassette exchange is dependent on the relative and absolute quantities of the transgene cassette and the recombinase. We were able to successfully modify genomic targets not only by electroporation or chemically mediated gene transfer but also by using an adenovirus vector carrying both the transgene cassette to be inserted and the recombinase coding region. RMCE proceeds efficiently in cells in which the adenovirus vector is able to replicate. In contrast, insufficient quantities of the transgene cassette are produced in cells in which the virus cannot replicate. Additional transfection of the transgene cassette significantly enhances the RMCE frequency. This demonstrates that an RMCE system in the context of a viral vector allows the site directed insertion of a transgene into a defined genomic site

    Intronic L1 Retrotransposons and Nested Genes Cause Transcriptional Interference by Inducing Intron Retention, Exonization and Cryptic Polyadenylation

    Get PDF
    Transcriptional interference has been recently recognized as an unexpectedly complex and mostly negative regulation of genes. Despite a relatively few studies that emerged in recent years, it has been demonstrated that a readthrough transcription derived from one gene can influence the transcription of another overlapping or nested gene. However, the molecular effects resulting from this interaction are largely unknown.Using in silico chromosome walking, we searched for prematurely terminated transcripts bearing signatures of intron retention or exonization of intronic sequence at their 3' ends upstream to human L1 retrotransposons, protein-coding and noncoding nested genes. We demonstrate that transcriptional interference induced by intronic L1s (or other repeated DNAs) and nested genes could be characterized by intron retention, forced exonization and cryptic polyadenylation. These molecular effects were revealed from the analysis of endogenous transcripts derived from different cell lines and tissues and confirmed by the expression of three minigenes in cell culture. While intron retention and exonization were comparably observed in introns upstream to L1s, forced exonization was preferentially detected in nested genes. Transcriptional interference induced by L1 or nested genes was dependent on the presence or absence of cryptic splice sites, affected the inclusion or exclusion of the upstream exon and the use of cryptic polyadenylation signals.Our results suggest that transcriptional interference induced by intronic L1s and nested genes could influence the transcription of the large number of genes in normal as well as in tumor tissues. Therefore, this type of interference could have a major impact on the regulation of the host gene expression

    The p53 Inhibitor MDM2 Facilitates Sonic Hedgehog-Mediated Tumorigenesis and Influences Cerebellar Foliation

    Get PDF
    Disruption of cerebellar granular neuronal precursor (GNP) maturation can result in defects in motor coordination and learning, or in medulloblastoma, the most common childhood brain tumor. The Sonic Hedgehog (Shh) pathway is important for GNP proliferation; however, the factors regulating the extent and timing of GNP proliferation, as well as GNP differentiation and migration are poorly understood. The p53 tumor suppressor has been shown to negatively regulate the activity of the Shh effector, Gli1, in neural stem cells; however, the contribution of p53 to the regulation of Shh signaling in GNPs during cerebellar development has not been determined. Here, we exploited a hypomorphic allele of Mdm2 (Mdm2puro), which encodes a critical negative regulator of p53, to alter the level of wild-type MDM2 and p53 in vivo. We report that mice with reduced levels of MDM2 and increased levels of p53 have small cerebella with shortened folia, reminiscent of deficient Shh signaling. Indeed, Shh signaling in Mdm2-deficient GNPs is attenuated, concomitant with decreased expression of the Shh transducers, Gli1 and Gli2. We also find that Shh stimulation of GNPs promotes MDM2 accumulation and enhances phosphorylation at serine 166, a modification known to increase MDM2-p53 binding. Significantly, loss of MDM2 in Ptch1+/− mice, a model for Shh-mediated human medulloblastoma, impedes cerebellar tumorigenesis. Together, these results place MDM2 at a major nexus between the p53 and Shh signaling pathways in GNPs, with key roles in cerebellar development, GNP survival, cerebellar foliation, and MB tumorigenesis

    EMSY overexpression disrupts the BRCA2/RAD51 pathway in the DNA-damage response: implications for chromosomal instability/recombination syndromes as checkpoint diseases

    Get PDF
    EMSY links the BRCA2 pathway to sporadic breast/ovarian cancer. It encodes a nuclear protein that binds to the BRCA2 N-terminal domain implicated in chromatin/transcription regulation, but when sporadically amplified/overexpressed, increased EMSY level represses BRCA2 transactivation potential and induces chromosomal instability, mimicking the activity of BRCA2 mutations in the development of hereditary breast/ovarian cancer. In addition to chromatin/transcription regulation, EMSY may also play a role in the DNA-damage response, suggested by its ability to localize at chromatin sites of DNA damage/repair. This implies that EMSY overexpression may also repress BRCA2 in DNA-damage replication/checkpoint and recombination/repair, coordinated processes that also require its interacting proteins: PALB2, the partner and localizer of BRCA2; RPA, replication/checkpoint protein A; and RAD51, the inseparable recombination/repair enzyme. Here, using a well-characterized recombination/repair assay system, we demonstrate that a slight increase in EMSY level can indeed repress these two processes independently of transcriptional interference/repression. Since EMSY, RPA and PALB2 all bind to the same BRCA2 region, these findings further support a scenario wherein: (a) EMSY amplification may mimic BRCA2 deficiency, at least by overriding RPA and PALB2, crippling the BRCA2/RAD51 complex at DNA-damage and replication/transcription sites; and (b) BRCA2/RAD51 may coordinate these processes by employing at least EMSY, PALB2 and RPA. We extensively discuss the molecular details of how this can happen to ascertain its implications for a novel recombination mechanism apparently conceived as checkpoint rather than a DNA repair system for cell division, survival, death, and human diseases, including the tissue specificity of cancer predisposition, which may renew our thinking about targeted therapy and prevention

    International Perspectives on Speaking Truth to Power

    No full text

    Abnormal Growth of Smooth Muscle–Like Cells in Lymphangioleiomyomatosis: Role for Tumor Suppressor TSC2

    No full text
    The TSC1 and TSC2 proteins, which function as a TSC1/TSC2 tumor suppressor complex, are associated with lymphangioleiomyomatosis (LAM), a genetic disorder characterized by the abnormal growth of smooth muscle–like cells in the lungs. The precise molecular mechanisms that modulate LAM cell growth remain unknown. We demonstrate that TSC2 regulates LAM cell growth. Cells dissociated from LAM nodules from the lungs of five different patients with LAM have constitutively activated S6K1, hyperphosphorylated ribosomal protein S6, activated Erk, and increased DNA synthesis compared with normal cells from the same patients. These effects were augmented by PDGF stimulation. Akt activity was unchanged in LAM cells. Rapamycin, a specific S6K1 inhibitor, abolished increased LAM cell growth. The full-length TSC2 was necessary for inhibition of S6 hyperphosphorylation and DNA synthesis in LAM cells, as demonstrated by co-microinjection of the C-terminus, which contains the GTPase activating protein homology domain, and the N-terminus, which binds TSC1. Our data demonstrate that increased LAM cell growth is associated with constitutive S6K1 activation, which is extinguishable by TSC2 expression. Loss of TSC2 GAP activity or disruption of the TSC1/TSC2 complex dysregulates S6K1 activation, which leads to abnormal cell proliferation associated with LAM disease
    corecore