418 research outputs found
Denitrifying pathways dominate nitrous oxide emissions from managed grassland during drought and rewetting
Nitrous oxide is a powerful greenhouse gas whose atmospheric growth rate has accelerated over the past decade. Most anthropogenic N2O emissions result from soil N fertilization, which is converted to N2O via oxic nitrification and anoxic denitrification pathways. Drought-affected soils are expected to be well oxygenated; however, using high-resolution isotopic measurements, we found that denitrifying pathways dominated N2O emissions during a severe drought applied to managed grassland. This was due to a reversible, drought-induced enrichment in nitrogen-bearing organic matter on soil microaggregates and suggested a strong role for chemo- or codenitrification. Throughout rewetting, denitrification dominated emissions, despite high variability in fluxes. Total N2O flux and denitrification contribution were significantly higher during rewetting than for control plots at the same soil moisture range. The observed feedbacks between precipitation changes induced by climate change and N2O emission pathways are sufficient to account for the accelerating N2O growth rate observed over the past decade
ChemBank: a small-molecule screening and cheminformatics resource database
ChemBank (http://chembank.broad.harvard.edu/) is a public, web-based informatics environment developed through a collaboration between the Chemical Biology Program and Platform at the Broad Institute of Harvard and MIT. This knowledge environment includes freely available data derived from small molecules and small-molecule screens and resources for studying these data. ChemBank is unique among small-molecule databases in its dedication to the storage of raw screening data, its rigorous definition of screening experiments in terms of statistical hypothesis testing, and its metadata-based organization of screening experiments into projects involving collections of related assays. ChemBank stores an increasingly varied set of measurements derived from cells and other biological assay systems treated with small molecules. Analysis tools are available and are continuously being developed that allow the relationships between small molecules, cell measurements, and cell states to be studied. Currently, ChemBank stores information on hundreds of thousands of small molecules and hundreds of biomedically relevant assays that have been performed at the Broad Institute by collaborators from the worldwide research community. The goal of ChemBank is to provide life scientists unfettered access to biomedically relevant data and tools heretofore available primarily in the private sector
Apoptosis-inducing factor deficiency decreases the proliferation rate and protects the subventricular zone against ionizing radiation
Cranial radiotherapy in children often leads to progressive cognitive decline. We have established a rodent model of irradiation-induced injury to the young brain. A single dose of 8âGy was administered to the left hemisphere of postnatal day 10 (P10) mice. Harlequin (Hq) mice, carrying the hypomorphic apoptosis-inducing factor AIFHq mutation, express 60% less AIF at P10 and displayed significantly fewer dying cells in the subventricular zone (SVZ) 6âh after IR, compared with wild type (Wt) littermates. Irradiated cyclophilin A-deficient (CypAâ/â) mice confirmed that CypA has an essential role in AIF-induced apoptosis after IR. Hq mice displayed no reduction in SVZ size 7 days after IR, whereas 48% of the SVZ was lost in Wt mice. The proliferation rate was lower in the SVZ of Hq mice. Cultured neural precursor cells from the SVZ of Hq mice displayed a slower proliferation rate and were more resistant to IR. IR preferentially kills proliferating cells, and the slower proliferation rate in the SVZ of Hq mice may, at least partly, explain the protective effect of the Hq mutation. Together, these results indicate that targeting AIF may provide a fruitful strategy for protection of normal brain tissue against the detrimental side effects of IR
Diverse Durham collection phages demonstrate complex BREX defence responses
Bacteriophages (phages) outnumber bacteria ten-to-one and cause infections at a rate of 1025 per second. The ability of phages to reduce bacterial populations makes them attractive alternative antibacterials for use in combating the rise in antimicrobial resistance. This effort may be hindered due to bacterial defenses such as Bacteriophage Exclusion (BREX) that have arisen from the constant evolutionary battle between bacteria and phages. For phages to be widely accepted as therapeutics in Western medicine, more must be understood about bacteriaâphage interactions and the outcomes of bacterial phage defense. Here, we present the annotated genomes of 12 novel bacteriophage species isolated from water sources in Durham, UK, during undergraduate practical classes. The collection includes diverse species from across known phylogenetic groups. Comparative analyses of two novel phages from the collection suggest they may be founding members of a new genus. Using this Durham phage collection, we determined that particular BREX defense systems were likely to confer a varied degree of resistance against an invading phage. We concluded that the number of BREX target motifs encoded in the phage genome was not proportional to the degree of susceptibility
Analysis of preterm deliveries below 35 weeks' gestation in a tertiary referral hospital in the UK. A case-control survey
<p>Abstract</p> <p>Background</p> <p>Preterm birth remains a major public health problem and its incidence worldwide is increasing. Epidemiological risk factors have been investigated in the past, but there is a need for a better understanding of the causes of preterm birth in well defined obstetric populations in tertiary referral centres; it is important to repeat surveillance and identify possible changes in clinical and socioeconomic factors associated with preterm delivery. The aim of this study was to identify current risk factors associated with preterm delivery and highlight areas for further research.</p> <p>Findings</p> <p>We studied women with singleton deliveries at St Michael's Hospital, Bristol during 2002 and 2003. 274 deliveries between 23-35 weeks' gestation (preterm group), were compared to 559 randomly selected control deliveries at term (37-42 weeks) using standard statistical procedures. Both groups were >80% Caucasian. Previous preterm deliveries, high maternal age (> 39 years), socioeconomic problems, smoking during pregnancy, hypertension, psychiatric disorders and uterine abnormalities were significantly associated with preterm deliveries. Both lean and obese mothers were more common in the preterm group. Women with depression/psychiatric disease were significantly more likely to have social problems, to have smoked during pregnancy and to have had previous preterm deliveries; when adjustments for these three factors were made the relationship between psychiatric disease and pregnancy outcome was no longer significant. 53% of preterm deliveries were spontaneous, and were strongly associated with episodes of threatened preterm labour. Medically indicated preterm deliveries were associated with hypertension and fetal growth restriction. Preterm premature rupture of the membranes, vaginal bleeding, anaemia and oligohydramnios were significantly increased in both spontaneous and indicated preterm deliveries compared to term controls.</p> <p>Conclusions</p> <p>More than 50% of preterm births are potentially preventable, but remain associated with risk factors such as increased uterine contractility, preterm premature rupture of the membranes and uterine bleeding whose aetiology is unknown. Despite remarkable advances in perinatal care, preterm birth continues to cause neonatal deaths and long-term morbidity. Significant breakthroughs in the management of preterm birth are likely to come from research into the mechanisms of human parturition and the pathophysiology of preterm labour using multidisciplinary clinical and laboratory approaches.</p
High-dose chemotherapy and autologous stem cell rescue for atypical teratoid/rhabdoid tumor of the central nervous system
Atypical Teratoid/Rhabdoid tumors (AT/RT) of the central nervous system are rare but aggressive tumors of childhood. Median survival with surgery and standard chemotherapy is less than 12Â months. In an attempt to improve outcome, patients were treated with aggressive surgical resection and multi-agent chemotherapy, followed by high dose chemotherapy with autologous stem cell rescue. Nine consecutive children (median age 21Â months) were diagnosed with AT/RT at the University of California San Francisco Childrens Hospital from 1997 to 2007 and treated with this aggressive approach. Diagnosis was confirmed using molecular markers. There are two long-term survivors (78 and 98Â months from diagnosis). One additional patient is alive with disease. Three patients died of disease during therapy. Three patients died of disease after therapy was complete. There were no toxic deaths. Two of nine patients treated for AT/RT at our institution with high dose chemotherapy and autologous bone marrow transplant are long-term survivors, suggesting that a subset of patients can be cured with this approach
Allograft and patient survival after sequential HSCT and kidney transplantation from the same donor - A multicenter analysis
Tolerance induction through simultaneous hematopoietic stem cell and renal transplantation has shown promising results, but it is hampered by the toxicity of preconditioning therapies and graft-versus-host disease (GVHD). Moreover, renal function has never been compared to conventionally transplanted patients, thus, whether donor-specific tolerance results in improved outcomes remains unanswered. We collected follow-up data of published cases of renal transplantations after hematopoietic stem cell transplantation from the same donor and compared patient and transplant kidney survival as well as function with caliper-matched living-donor renal transplantations from the Austrian dialysis and transplant registry. Overall, 22 tolerant and 20 control patients were included (median observation period 10Â years [range 11Â months to 26Â years]). In the tolerant group, no renal allograft loss was reported, whereas 3 were lost in the control group. Median creatinine levels were 85Â ÎŒmol/l (interquartile range [IQR] 72-99) in the tolerant cohort and 118Â ÎŒmol/l (IQR 99-143) in the control group. Mixed linear-model showed around 29% lower average creatinine levels throughout follow-up in the tolerant group (PÂ <Â .01). Our data clearly show stable renal graft function without long-term immunosuppression for many years, suggesting permanent donor-specific tolerance. Thus sequential transplantation might be an alternative approach for future studies targeting tolerance induction in renal allograft recipients
Antibody to the dendritic cell surface activation antigen CD83 prevents acute graft-versus-host disease
Allogeneic (allo) hematopoietic stem cell transplantation is an effective therapy for hematological malignancies but it is limited by acute graft-versus-host disease (GVHD). Dendritic cells (DC) play a major role in the allo T cell stimulation causing GVHD. Current immunosuppressive measures to control GVHD target T cells but compromise posttransplant immunity in the patient, particularly to cytomegalovirus (CMV) and residual malignant cells. We showed that treatment of allo mixed lymphocyte cultures with activated human DC-depleting CD83 antibody suppressed alloproliferation but preserved T cell numbers, including those specific for CMV. We also tested CD83 antibody in the human T cellâdependent peripheral blood mononuclear cell transplanted SCID (hu-SCID) mouse model of GVHD. We showed that this model requires human DC and that CD83 antibody treatment prevented GVHD but, unlike conventional immunosuppressants, did not prevent engraftment of human T cells, including cytotoxic T lymphocytes (CTL) responsive to viruses and malignant cells. Immunization of CD83 antibody-treated hu-SCID mice with irradiated human leukemic cell lines induced allo antileukemic CTL effectors in vivo that lysed 51Cr-labeled leukemic target cells in vitro without further stimulation. Antibodies that target activated DC are a promising new therapeutic approach to the control of GVHD
- âŠ