85 research outputs found
Universality in Uncertainty Relations for a Quantum Particle
A general theory of preparational uncertainty relations for a quantum particle in one spatial dimension is developed. We derive conditions which determine whether a given smooth function of the particle's variances and its covariance is bounded from below. Whenever a global minimum exists, an uncertainty relation has been obtained. The squeezed number states of a harmonic oscillator are found to be universal: no other pure or mixed states will saturate any such relation. Geometrically, we identify a convex uncertainty region in the space of second moments which is bounded by the inequality derived by Robertson and Schrödinger. Our approach provides a unified perspective on existing uncertainty relations for a single continuous variable, and it leads to new inequalities for second moments which can be checked experimentally
Strategies for blocking the fibrogenic actions of connective tissue growth factor (CCN2): From pharmacological inhibition in vitro to targeted siRNA therapy in vivo
Connective tissue growth factor (CCN2) is a major pro-fibrotic factor that frequently acts downstream of transforming growth factor beta (TGF-ÎČ)-mediated fibrogenic pathways. Much of our knowledge of CCN2 in fibrosis has come from studies in which its production or activity have been experimentally attenuated. These studies, performed both in vitro and in animal models, have demonstrated the utility of pharmacological inhibitors (e.g. tumor necrosis factor alpha (TNF-α), prostaglandins, peroxisome proliferator-activated receptor-gamma (PPAR-Îł) agonists, statins, kinase inhibitors), neutralizing antibodies, antisense oligonucleotides, or small interfering RNA (siRNA) to probe the role of CCN2 in fibrogenic pathways. These investigations have allowed the mechanisms regulating CCN2 production to be more clearly defined, have shown that CCN2 is a rational anti-fibrotic target, and have established a framework for developing effective modalities of therapeutic intervention in vivo
The Cholesterol Metabolite 25-Hydroxycholesterol Activates Estrogen Receptor α-Mediated Signaling in Cancer Cells and in Cardiomyocytes
The hydroxylated derivatives of cholesterol, such as the oxysterols, play important roles in lipid metabolism. In particular, 25-hydroxycholesterol (25 HC) has been implicated in a variety of metabolic events including cholesterol homeostasis and atherosclerosis. 25 HC is detectable in human plasma after ingestion of a meal rich in oxysterols and following a dietary cholesterol challenge. In addition, the levels of oxysterols, including 25 HC, have been found to be elevated in hypercholesterolemic serum.Here, we demonstrate that the estrogen receptor (ER) α mediates gene expression changes and growth responses induced by 25 HC in breast and ovarian cancer cells. Moreover, 25 HC exhibits the ERα-dependent ability like 17 ÎČ-estradiol (E2) to inhibit the up-regulation of HIF-1α and connective tissue growth factor by hypoxic conditions in cardiomyocytes and rat heart preparations and to prevent the hypoxia-induced apoptosis.The estrogen action exerted by 25 HC may be considered as an additional factor involved in the progression of breast and ovarian tumors. Moreover, the estrogen-like activity of 25 HC elicited in the cardiovascular system may play a role against hypoxic environments
A multiâomics approach identifies key regulatory pathways induced by longâterm zinc supplementation in human primary retinal pigment epithelium
In age-related macular degeneration (AMD), both systemic and local zinc levels decline.
Elevation of zinc in clinical studies delayed the progression to end-stage AMD. However, the molecular
pathways underpinning this beneficial effect are not yet identified. In this study, we used differentiated
primary human fetal retinal pigment epithelium (RPE) cultures and long-term zinc supplementation
to carry out a combined transcriptome, proteome and secretome analysis from three genetically
different human donors. After combining significant differences, we identified the complex molecular
networks using Database for Annotation, Visualization and Integrated Discovery (DAVID) and
Ingenuity Pathway Analysis (IPA). The cell cultures from the three donors showed extensive
pigmentation, development of microvilli and basal infoldings and responded to zinc supplementation
with an increase in transepithelial electrical resistance (TEER) (apical supplementation: 443.2 ± 79.3%,
basal supplementation: 424.9 ± 116.8%, compared to control: 317.5 ± 98.2%). Significant changes were
observed in the expression of 1044 genes, 151 cellular proteins and 124 secreted proteins. Gene set
enrichment analysis revealed changes in specific molecular pathways related to cell adhesion/polarity,
extracellular matrix organization, protein processing/transport, and oxidative stress response by zinc
and identified a key upstream regulator effect similar to that of TGFB1
Metabolomics and Age-Related Macular Degeneration
Age-related macular degeneration (AMD) leads to irreversible visual loss, therefore, early intervention is desirable, but due to its multifactorial nature, diagnosis of early disease might be challenging. Identification of early markers for disease development and progression is key for disease diagnosis. Suitable biomarkers can potentially provide opportunities for clinical intervention at a stage of the disease when irreversible changes are yet to take place. One of the most metabolically active tissues in the human body is the retina, making the use of hypothesis-free techniques, like metabolomics, to measure molecular changes in AMD appealing. Indeed, there is increasing evidence that metabolic dysfunction has an important role in the development and progression of AMD. Therefore, metabolomics appears to be an appropriate platform to investigate disease-associated biomarkers. In this review, we explored what is known about metabolic changes in the retina, in conjunction with the emerging literature in AMD metabolomics research. Methods for metabolic biomarker identification in the eye have also been discussed, including the use of tears, vitreous, and aqueous humor, as well as imaging methods, like fluorescence lifetime imaging, that could be translated into a clinical diagnostic tool with molecular level resolution
PLoS One
Age-related macular degeneration (AMD) is a common, progressive multifactorial vision-threatening disease and many genetic and environmental risk factors have been identified. The risk of AMD is influenced by lifestyle and diet, which may be reflected by an altered metabolic profile. Therefore, measurements of metabolites could identify biomarkers for AMD, and could aid in identifying high-risk individuals. Hypothesis-free technologies such as metabolomics have a great potential to uncover biomarkers or pathways that contribute to disease pathophysiology. To date, only a limited number of metabolomic studies have been performed in AMD. Here, we aim to contribute to the discovery of novel biomarkers and metabolic pathways for AMD using a targeted metabolomics approach of 188 metabolites. This study focuses on non-advanced AMD, since there is a need for biomarkers for the early stages of disease before severe visual loss has occurred. Targeted metabolomics was performed in 72 patients with early or intermediate AMD and 72 control individuals, and metabolites predictive for AMD were identified by a sparse partial least squares discriminant analysis. In our cohort, we identified four metabolite variables that were most predictive for early and intermediate stages of AMD. Increased glutamine and phosphatidylcholine diacyl C28:1 levels were detected in non-advanced AMD cases compared to controls, while the rate of glutaminolysis and the glutamine to glutamate ratio were reduced in non-advanced AMD. The association of glutamine with non-advanced AMD corroborates a recent report demonstrating an elevated glutamine level in early AMD using a different metabolomics technique. In conclusion, this study indicates that metabolomics is a suitable method for the discovery of biomarker candidates for AMD. In the future, larger metabolomics studies could add to the discovery of novel biomarkers in yet unknown AMD pathways and expand our insights in AMD pathophysiology
Ophthalmology
OBJECTIVE: In the current study we aimed to identify metabolites associated with age-related macular degeneration (AMD) by performing the largest metabolome association analysis in AMD to date. In addition, we aimed to determine the effect of AMD-associated genetic variants on metabolite levels, and aimed to investigate associations between the identified metabolites and activity of the complement system, one of the main AMD-associated disease pathways. DESIGN: Case-control assocation analysis of metabolomics data. SUBJECTS: 2,267 AMD cases and 4,266 controls from five European cohorts. METHODS: Metabolomics was performed using a high-throughput H-NMR metabolomics platform, which allows the quantification of 146 metabolite measurements and 79 derivative values. Metabolome-AMD associations were studied using univariate logistic regression analyses. The effect of 52 AMD-associated genetic variants on the identified metabolites was investigated using linear regression. In addition, associations between the identified metabolites and activity of the complement pathway (defined by the C3d/C3 ratio) were investigated using linear regression. MAIN OUTCOME MEASURES: Metabolites associated with AMD RESULTS: We identified 60 metabolites that were significantly associated with AMD, including increased levels of large and extra-large HDL subclasses and decreased levels of VLDL, amino acids and citrate. Out of 52 AMD-associated genetic variants, seven variants were significantly associated with 34 of the identified metabolites. The strongest associations were identified for genetic variants located in or near genes involved in lipid metabolism (ABCA1, CETP, APOE, LIPC) with metabolites belonging to the large and extra-large HDL subclasses. In addition, 57 out of 60 metabolites were significantly associated with complement activation levels, and these associations were independent of AMD status. Increased large and extra-large HDL levels and decreased VLDL and amino acid levels were associated with increased complement activation. CONCLUSIONS: Lipoprotein levels were associated with AMD-associated genetic variants, while decreased essential amino acids may point to nutritional deficiencies in AMD. We observed strong associations between the vast majority of the AMD-associated metabolites and systemic complement activation levels, independent of AMD status. This may indicate biological interactions between the main AMD disease pathways, and suggests that multiple pathways may need to be targeted simultaneously for successful treatment of AMD
Prevalence of Age-Related Macular Degeneration in Europe: The Past and the Future
Purpose Age-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD in Europe from 1990 to 2013 using the European Eye Epidemiology (E3) consortium, and made projections for the future. Design Meta-analysis of prevalence data. Participants A total of 42 080 individuals 40 years of age and older participating in 14 population-based cohorts from 10 countries in Europe. Methods AMD was diagnosed based on fundus photographs using the Rotterdam Classification. Prevalence of early and late AMD was calculated using random-effects meta-analysis stratified for age, birth cohort, gender, geographic region, and time period of the study. Best-corrected visual acuity (BCVA) was compared between late AMD subtypes; geographic atrophy (GA) and choroidal neovascularization (CNV). Main Outcome Measures Prevalence of early and late AMD, BCVA, and number of AMD cases. Results Prevalence of early AMD increased from 3.5% (95% confidence interval [CI] 2.1%â5.0%) in those aged 55â59 years to 17.6% (95%
- âŠ