131 research outputs found
Absolute Frequency Measurements of the Hg^+ and Ca Optical Clock Transitions with a Femtosecond Laser
The frequency comb created by a femtosecond mode-locked laser and a
microstructured fiber is used to phase coherently measure the frequencies of
both the Hg^+ and Ca optical standards with respect to the SI second as
realized at NIST. We find the transition frequencies to be f_Hg=1 064 721 609
899 143(10) Hz and f_Ca=455 986 240 494 158(26) Hz, respectively. In addition
to the unprecedented precision demonstrated here, this work is the precursor to
all-optical atomic clocks based on the Hg^+ and Ca standards. Furthermore, when
combined with previous measurements, we find no time variations of these atomic
frequencies within the uncertainties of |(df_Ca/dt)/f_Ca| < 8 x 10^{-14}
yr^{-1}, and |(df_Hg/dt)/f_Hg|< 30 x 10^{-14} yr^{-1}.Comment: 6 pages, including 4 figures. RevTex 4. Submitted to Phys. Rev. Let
Ultra-precise measurement of optical frequency ratios
We developed a novel technique for frequency measurement and synthesis, based
on the operation of a femtosecond comb generator as transfer oscillator. The
technique can be used to measure frequency ratios of any optical signals
throughout the visible and near-infrared part of the spectrum. Relative
uncertainties of for averaging times of 100 s are possible. Using a
Nd:YAG laser in combination with a nonlinear crystal we measured the frequency
ratio of the second harmonic at 532 nm to the fundamental at
1064 nm, .Comment: 4 pages, 4 figure
Coulomb energy contribution to the excitation energy in Th and enhanced effect of variation
We calculated the contribution of Coulomb energy to the spacing between the
ground and first excited state of Th nucleus as a function of the
deformation parameter . We show that despite the fact that the odd
particle is a neutron, the change in Coulomb energy between these two states
can reach several hundreds KeV.This means that the effect of the variation of
the fine structure constant may be enhanced
times in the 7.6 eV "nuclear clock" transition
between the ground and first excited states in the Th nucleus.Comment: 6 pages,2 figure
Remote frequency measurement of the 1S0-3P1 transition in laser cooled Mg-24
We perform Ramsey-Bord\'e spectroscopy on laser-cooled magnesium atoms in
free fall to measure the 1S0 \rightarrow 3P1 intercombination transition
frequency. The measured value of 655 659 923 839 730 (48) Hz is consistent with
our former atomic beam measurement (Friebe et al 2008 Phys. Rev. A 78 033830).
We improve upon the fractional accuracy of the previous measurement by more
than an order of magnitude to 7e-14. The magnesium frequency standard was
referenced to a fountain clock of the Physikalisch-Technische Bundesanstalt
(PTB) via a phase-stabilized telecom fiber link and its stability was
characterized for interrogation times up to 8000 s. The high temperature of the
atomic ensemble leads to a systematic shift due to the motion of atoms across
the spectroscopy beams. In our regime, this leads to a counterintuitive
reduction of residual Doppler shift with increasing resolution. Our theoretical
model of the atom-light interaction is in agreement with the observed effect
and allows us to quantify its contribution in the uncertainty budget.Comment: 16 pages, 8 figures. Accepted in New Journal of Physic
Roadmap towards the redefinition of the second
This paper outlines the roadmap towards the redefinition of the second, which was recently updated by the CCTF Task Force created by the CCTF in 2020. The main achievements of optical frequency standards (OFS) call for reflection on the redefinition of the second, but open new challenges related to the performance of the OFS, their contribution to time scales and UTC, the possibility of their comparison, and the knowledge of the Earth's gravitational potential to ensure a robust and accurate capacity to realize a new definition at the level of 10-18 uncertainty. The mandatory criteria to be achieved before redefinition have been defined and their current fulfilment level is estimated showing the fields that still needed improvement. The possibility to base the redefinition on a single or on a set of transitions has also been evaluated. The roadmap indicates the steps to be followed in the next years to be ready for a sound and successful redefinition
Frequencies of interleukin-6, GST and progesterone receptor gene polymorphisms in postmenopausal women with low bone mineral density
Cold atoms in space: community workshop summary and proposed road-map
We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies
Bayesian estimation of associations between identified longitudinal hormone subgroups and age at final menstrual period
- …
