637 research outputs found
The Impact of Molecular Polarization on the Electronic Properties of Molecular Semiconductors
In a molecular semiconductor, the carrier is dressed with a polarization
cloud that we treat as a quantum field of Frenkel excitons coupled to it. The
consequences of the existence of this electronic polaron on the dynamics of an
extra charge in a material like pentacene can thus be evaluated.Comment: 7 pages, 1 figure, LaTe
Phase diagram of the fully frustrated transverse-field Ising model on the honeycomb lattice
Motivated by the current interest in the quantum dimer model on the
triangular lattice, we investigate the phase diagram of the closely related
fully-frustrated transverse field Ising model on the honeycomb lattice using
classical and semi-classical approximations. We show that, in addition to the
fully polarized phase at large field, the classical model possesses a multitude
of phases that break the translational symmetry which in the dimer language,
correspond to a plaquette phase and a columnar phase separated by an infinite
cascade of mixed phases. The modification of the phase diagram by quantum
fluctuations has been investigated in the context of linear spin-wave theory.
The extrapolation of the semiclassical energies suggests that the plaquette
phase extends down to zero field for spin 1/2, in agreement with the
phase of the quantum dimer model on the triangular
lattice with only kinetic energy.Comment: 15 Pages, 11 Figures, Accepted for PR
Polarization effects in the channel of an organic field-effect transistor
We present the results of our calculation of the effects of dynamical
coupling of a charge-carrier to the electronic polarization and the
field-induced lattice displacements at the gate-interface of an organic
field-effect transistor (OFET). We find that these interactions reduce the
effective bandwidth of the charge-carrier in the quasi-two dimensional channel
of a pentacene transistor by a factor of two from its bulk value when the gate
is a high-permittivity dielectric such as
while this reduction essentially vanishes using a polymer gate-insulator. These
results demonstrate that carrier mass renormalization triggers the dielectric
effects on the mobility reported recently in OFETs.Comment: 19 pages, 3 figure
General conditions for scale-invariant perturbations in an expanding universe
We investigate the general properties of expanding cosmological models which
generate scale-invariant curvature perturbations in the presence of a variable
speed of sound. We show that in an expanding universe, generation of a
super-Hubble, nearly scale-invariant spectrum of perturbations over a range of
wavelengths consistent with observation requires at least one of three
conditions: (1) accelerating expansion, (2) a speed of sound faster than the
speed of light, or (3) super-Planckian energy density.Comment: 4 pages, RevTe
Near Scale Invariance with Modified Dispersion Relations
We describe a novel mechanism to seed a nearly scale invariant spectrum of
adiabatic perturbations during a non-inflationary stage. It relies on a
modified dispersion relation that contains higher powers of the spatial
momentum of matter perturbations. We implement this idea in the context of a
massless scalar field in an otherwise perfectly homogeneous universe. The
couplings of the field to background scalars and tensors give rise to the
required modification of its dispersion relation, and the couplings of the
scalar to matter result in an adiabatic primordial spectrum. This work is meant
to explicitly illustrate that it is possible to seed nearly scale invariant
primordial spectra without inflation, within a conventional expansion history.Comment: 7 pages and no figures. Uses RevTeX
Supersolid phase with cold polar molecules on a triangular lattice
We study a system of heteronuclear molecules on a triangular lattice and
analyze the potential of this system for the experimental realization of a
supersolid phase. The ground state phase diagram contains superfluid, solid and
supersolid phases. At finite temperatures and strong interactions there is an
additional emulsion region, in contrast to similar models with short-range
interactions. We derive the maximal critical temperature and the
corresponding entropy for supersolidity and find feasible
experimental conditions for its realization.Comment: 4 pages, 4 figure
Unconventional magnetization plateaus in a Shastry-Sutherland spin tube
Using density matrix renormalization group (DMRG) and perturbative continuous
unitary transformations (PCUTs), we study the magnetization process in a
magnetic field for all coupling strengths of a quasi-1D version of the 2D
Shastry-Sutherland lattice, a frustrated spin tube made of two orthogonal dimer
chains. At small inter-dimer coupling, plateaus in the magnetization appear at
1/6, 1/4, 1/3, 3/8, and 1/2. As in 2D, they correspond to a Wigner crystal of
triplons. However, close to the boundary of the product singlet phase, plateaus
of a new type appear at 1/5 and 3/4. They are stabilized by the localization of
{\it bound states} of triplons. Their magnetization profile differs
significantly from that of single triplon plateaus and leads to specific NMR
signatures. We address the possibility to stabilize such plateaus in further
geometries by analyzing small finite clusters using exact diagonalizations and
the PCUTs.Comment: Final version as published in EP
A Dynamical Solution to the Problem of a Small Cosmological Constant and Late-time Cosmic Acceleration
Increasing evidence suggests that most of the energy density of the universe
consists of a dark energy component with negative pressure, a ``cosmological
constant" that causes the cosmic expansion to accelerate. In this paper, we
address the puzzle of why this component comes to dominate the universe only
recently rather than at some much earlier epoch. We present a class of theories
based on an evolving scalar field where the explanation is based entirely on
internal dynamical properties of the solutions. In the theories we consider,
the dynamics causes the scalar field to lock automatically into a negative
pressure state at the onset of matter-domination such that the present epoch is
the earliest possible time, consistent with nucleosynthesis restrictions, when
it can start to dominate.Comment: 5 pages, 3 figure
Quantum coherence and carriers mobility in organic semiconductors
We present a model of charge transport in organic molecular semiconductors
based on the effects of lattice fluctuations on the quantum coherence of the
electronic state of the charge carrier. Thermal intermolecular phonons and
librations tend to localize pure coherent states and to assist the motion of
less coherent ones. Decoherence is thus the primary mechanism by which
conduction occurs. It is driven by the coupling of the carrier to the molecular
lattice through polarization and transfer integral fluctuations as described by
the hamiltonian of Gosar and Choi. Localization effects in the quantum coherent
regime are modeled via the Anderson hamiltonian with correlated diagonal and
non-diagonal disorder leading to the determination of the carrier localization
length. This length defines the coherent extension of the ground state and
determines, in turn, the diffusion range in the incoherent regime and thus the
mobility. The transfer integral disorder of Troisi and Orlandi can also be
incorporated. This model, based on the idea of decoherence, allowed us to
predict the value and temperature dependence of the carrier mobility in
prototypical organic semiconductors that are in qualitative accord with
experiments
- …