523 research outputs found
Matched-Filter Detection of Mode-Locked Laser Signals
The passive Fabry-Perot cavity is shown to be a good practical approach to the match-filter optimization for the sensitive detection of mode-locked laser signals. Doppler measurements of relative motion over a wide range of velocities are possible simply by measuring the cavity length for a peak output
Analysis of second harmonic generation in photonic-crystal-assisted waveguides
We study second harmonic generation in a planar dielectric waveguide having a
low-index, polymer core layer, bounded by two multilayer stacks. This geometry
allows exceptionally strong confinement of the light at the fundamental
wavelength inside the core region with virtually zero net propagation losses
for distances that exceed several centimeters, provided material and scattering
losses are neglected. A phase-matched configuration of the waveguide is
reported in which the pump signal is the lowest-order mode of the waveguide,
and the generated second harmonic signal corresponds to the third propagation
mode of the waveguide. Using a polymer waveguide core, having chi(2)=100 pm/V,
we predict a conversion efficiency of approximately 90% after a propagation
distance of 2 mm, using peak pump intensities inside the core of the waveguide
of 1.35 GW/cm^2. If the waveguide core contains polymer layers with different
glass transition temperatures, the layers can be poled independently to
maximize the overlap integral, and similar pump depletions may be achieved over
a distance of approximately 500 microns.Comment: 20 pages, 7 figures, 330k
Testing the relativistic Doppler boost hypothesis for supermassive black hole binary candidates
Supermassive black hole binaries (SMBHBs) should be common in galactic nuclei as a result of frequent galaxy mergers. Recently, a large sample of sub-parsec SMBHB candidates was identified as bright periodically variable quasars in optical surveys. If the observed periodicity corresponds to the redshifted binary orbital period, the inferred orbital velocities are relativistic (v/c ≈ 0.1). The optical and ultraviolet (UV) luminosities are expected to arise from gas bound to the individual BHs, and would be modulated by the relativistic Doppler effect. The optical and UV light curves should vary in tandem with relative amplitudes which depend on the respective spectral slopes. We constructed a control sample of 42 quasars with aperiodic variability, to test whether this Doppler colour signature can be distinguished from intrinsic chromatic variability. We found that the Doppler signature can arise by chance in ∼20 per cent (∼37 per cent) of quasars in the nUV (fUV) band. These probabilities reflect the limited quality of the control sample and represent upper limits on how frequently quasars mimic the Doppler brightness+colour variations. We performed separate tests on the periodic quasar candidates, and found that for the majority, the Doppler boost hypothesis requires an unusually steep UV spectrum or an unexpectedly large BH mass and orbital velocity. We conclude that at most approximately one-third of these periodic candidates can harbor Doppler-modulated SMBHBs
Searching for gravitational waves via Doppler tracking by future missions to Uranus and Neptune
The past year has seen numerous publications underlining the importance of a space mission to the ice giants in the upcoming decade. Proposed mission plans involve a ∼10 yr cruise time to the ice giants. This cruise time can be utilized to search for low-frequency gravitational waves (GWs) by observing the Doppler shift caused by them in the Earth–spacecraft radio link. We calculate the sensitivity of prospective ice giant missions to GWs. Then, adopting a steady-state black hole binary population, we derive a conservative estimate for the detection rate of extreme mass ratio inspirals (EMRIs), supermassive black hole (SMBH), and stellar mass binary black hole (sBBH) mergers. We link the SMBH population to the fraction of quasars fbin resulting from Galaxy mergers that pair SMBHs to a binary. For a total of 10 40-d observations during the cruise of a single spacecraft, O(fbin)∼0.5 detections of SMBH mergers are likely, if Allan deviation of Cassini-era noise is improved by ∼102 in the 10−5 − 10−3 Hz range. For EMRIs the number of detections lies between O(0.1) and O(100). Furthermore, ice giant missions combined with the Laser Interferometer Space Antenna (LISA) would improve the localization by an order of magnitude compared to LISA by itself
Optical and magneto-optical properties of ferromagnetic full-Heusler films: experiments and first-principles calculations
We report a joint theoretical and experimental study focused on understanding
the optical and magneto-optical properties of Co-based full-Heusler compounds.
We show that magneto-optical spectra calculated within ab-initio density
functional theory are able to uniquely identify the features of the
experimental spectra in terms of spin resolved electronic transitions. As
expected for 3d-based magnets, we find that the largest Kerr rotation for these
alloys is of the order of 0.3o in polar geometry. In addition, we demonstrate
that (i) multilayered structures have to be carefully handled in the
theoretical calculations in order to improve the agreement with experiments,
and (ii) combined theoretical and experimental investigations constitute a
powerful approach to designing new materials for magneto-optical and
spin-related applicationsComment: 20 pages, including 6 figures and 1 table. 40 refs. To be published
in Phys. Rev.
Testing the relativistic Doppler boost hypothesis for supermassive black hole binary candidates
Supermassive black hole binaries (SMBHBs) should be common in galactic nuclei as a result of frequent galaxy mergers. Recently, a large sample of sub-parsec SMBHB candidates was identified as bright periodically variable quasars in optical surveys. If the observed periodicity corresponds to the redshifted binary orbital period, the inferred orbital velocities are relativistic (v/c ≈ 0.1). The optical and ultraviolet (UV) luminosities are expected to arise from gas bound to the individual BHs, and would be modulated by the relativistic Doppler effect. The optical and UV light curves should vary in tandem with relative amplitudes which depend on the respective spectral slopes. We constructed a control sample of 42 quasars with aperiodic variability, to test whether this Doppler colour signature can be distinguished from intrinsic chromatic variability. We found that the Doppler signature can arise by chance in ∼20 per cent (∼37 per cent) of quasars in the nUV (fUV) band. These probabilities reflect the limited quality of the control sample and represent upper limits on how frequently quasars mimic the Doppler brightness+colour variations. We performed separate tests on the periodic quasar candidates, and found that for the majority, the Doppler boost hypothesis requires an unusually steep UV spectrum or an unexpectedly large BH mass and orbital velocity. We conclude that at most approximately one-third of these periodic candidates can harbor Doppler-modulated SMBHBs
Testing the relativistic Doppler boost hypothesis for the binary candidate quasar PG1302-102 with multiband Swift data
The bright quasar PG1302-102 has been identified as a candidate supermassive black hole binary from its near-sinusoidal optical variability. While the significance of its optical periodicity has been debated due to the stochastic variability of quasars, its multiwavelength variability in the ultraviolet (UV) and optical bands is consistent with relativistic Doppler boost caused by the orbital motion in a binary. However, this conclusion was based previously on sparse UV data that were not taken simultaneously with the optical data. Here, we report simultaneous follow-up observations of PG1302-102 with the Ultraviolet Optical Telescope on the Neil Gehrels Swift Observatory in six optical + UV bands. The additional nine Swift observations produce light curves roughly consistent with the trend under the Doppler boost hypothesis, which predicts that UV variability should track the optical, but with a ∼2.2 times higher amplitude. We perform a statistical analysis to quantitatively test this hypothesis. We find that the data are consistent with the Doppler boost hypothesis when we compare the the amplitudes in optical B-band and UV light curves. However, the ratio of UV to V-band variability is larger than expected and is consistent with the Doppler model, only if either the UV/optical spectral slopes vary, the stochastic variability makes a large contribution in the UV, or the sparse new optical data underestimate the true optical variability. We have evidence for the latter from comparison with the optical light curve from All-Sky Automated Survey for Supernovae. Additionally, the simultaneous analysis of all four bands strongly disfavours the Doppler boost model whenever Swift V band is involved. Additional, simultaneous optical + UV observations tracing out another cycle of the 5.2-yr proposed periodicity should lead to a definitive conclusion
NuSTAR Observations of Candidate Subparsec Binary Supermassive Black Holes
© 2024 The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/We present an analysis of NuSTAR X-ray observations of three active galactic nuclei (AGN) that were identified as candidate subparsec binary supermassive black hole (SMBH) systems in the Catalina Real-Time Transient Survey based on apparent periodicity in their optical light curves. Simulations predict that close-separation accreting SMBH binaries will have different X-ray spectra than single accreting SMBHs. We previously observed these AGN with Chandra and found no differences between their low-energy X-ray properties and the larger AGN population. However, some models predict differences to be more prominent at energies higher than probed by Chandra. We find that even at the higher energies probed by NuSTAR, the spectra of these AGN are indistinguishable from the larger AGN population. This could rule out models predicting large differences in the X-ray spectra in the NuSTAR bands. Alternatively, it might mean that these three AGN are not binary SMBHs.Peer reviewe
Measurement of the B+ --> p pbar K+ Branching Fraction and Study of the Decay Dynamics
With a sample of 232x10^6 Upsilon(4S) --> BBbar events collected with the
BaBar detector, we study the decay B+ --> p pbar K+ excluding charmonium decays
to ppbar. We measure a branching fraction Br(B+ --> p pbar
K+)=(6.7+/-0.5+/-0.4)x10^{-6}. An enhancement at low ppbar mass is observed and
the Dalitz plot asymmetry suggests dominance of the penguin amplitude in this B
decay. We search for a pentaquark candidate Theta*++ decaying into pK+ in the
mass range 1.43 to 2.00 GeV/c2 and set limits on Br(B+ -->
Theta*++pbar)xBr(Theta*++ --> pK+) at the 10^{-7} level.Comment: 8 pages, 7 postscript figures, submitted to Phys. Rev. D (Rapid
Communications
- …