3,206 research outputs found
Preparation for an investigation of the thermal radiation characteristics and thermal conductivity of lunar material Final report, 1968
Vacuum system and chamber design, and thermal radiation and conductivity measurement techniques for lunar material investigation
Biodegradable ion-exchange microspheres based on modified polylysines
Poly-L-lysine was synthesized via a triethylamine initiated ring-opening polymerization of Z-L-lysine-N'~-carboxyanhydride,\ud
followed by deprotection of the E-amino group. Subsequently the polylysine was sulfamated using a pyridinium-sulfate complex to obtain polymers with varying degrees of sulfamation ranging from 0 to 100%. Cytotoxicity of these materials was tested using tetrazolium metabolism (MTI') assays with B16F10 and P388 cell lines. Cytotoxicity of sulfamated polylysines with a degree of sulfamation of 80% and higher was significantly reduced as compared with the native polylysines. In both cell lines, LDso of the sulfamated materials was higher than 5 mg/ml, which was the highest dose tested. LDso of the native polylysines was lower than 0.1 mg/ml in the case of B16F10 and lower than 0.01 mg/ml in the case of P388 cells. Sulfamated polylysines with a degree of sulfamation of 80% were used to prepare microspheres (SPLMS). The microspheres were stabilized using glutaraldehyde or oxidized dextran as a crosslinking agent. The swelling ratio (defined as V~wollen/Vdr~ed) of the SPLMS in aqueous media decreased with increasing ionic strength and crosslink density. The pH (ranging from 3 to 11) had no influence on the swelling ratio of SPLMS. The maximal swelling ratio was approximately 35 (SPLMS crosslinked with 0.5% glutaraldehyde in distilled water). SPLMS could be loaded with adriamycin up to a payload of 60%, which was not influenced by the crosslinking method. The adriamycin release was controlled by the ionic strength of the release medium: no drug was released in non-ionic medium such as distilled water, while 80% of the drug was released in phosphate buffered saline. This effect of the change in ionic strength could be applied to prepare a microsphere suspension in non-ionic medium such as 5% glucose solution, which does not contain free adriamycin. The drug would only be release after intra-arterial administration of this suspension, due to\ud
the presence of the blood
- …