1,806 research outputs found

    側芽によるアスパラガスの栄養繁殖

    Get PDF
    Procedures of vegetative propagation of asparagus were studied using lateral bud culture. Lateral buds excised from a spear were placed on the Murashige and Skoog's medium, the basic medium used in this study, with or without NAA. Shoots that were grown on this medium were used for further vegetative propagation. Mature buds on the proximal part of the shoot were placed on the basic medium and good shoot growth resulted. Apical and young buds on the distal part of shoots were planted on the basic medium containing NAA and kinetin. Shoot and root growth resulted. Plantlets with shoots and roots were transplanted to the basic medium in 500 ml flasks and grew to transplantable size. A comparison of 1, 20 and 50 bud densities/50 ml of medium indicated that there was a growth-promoting diffusing-substance evident by the marked improvement of shoot and root growth at the highest bud density. It was determined that this growth promoting effect was not caused by NAA. Horizontal placing of shoot with bud upright on the medium was more effective for shoot and root growth than either shoots implanted with distal end up or with proximal end up

    Encounter complexes and dimensionality reduction in protein-protein association

    Get PDF
    An outstanding challenge has been to understand the mechanism whereby proteins associate. We report here the results of exhaustively sampling the conformational space in protein–protein association using a physics-based energy function. The agreement between experimental intermolecular paramagnetic relaxation enhancement (PRE) data and the PRE profiles calculated from the docked structures shows that the method captures both specific and non-specific encounter complexes. To explore the energy landscape in the vicinity of the native structure, the nonlinear manifold describing the relative orientation of two solid bodies is projected onto a Euclidean space in which the shape of low energy regions is studied by principal component analysis. Results show that the energy surface is canyon-like, with a smooth funnel within a two dimensional subspace capturing over 75% of the total motion. Thus, proteins tend to associate along preferred pathways, similar to sliding of a protein along DNA in the process of protein-DNA recognition

    Structural Basis of the Association of HIV-1 Matrix Protein with DNA

    Get PDF
    HIV-1 matrix (MA) is a multifunctional protein that is synthesized as a polyprotein that is cleaved by protease during viral maturation. MA contains a cluster of basic residues whose role is controversial. Proposed functions include membrane anchoring, facilitating viral assembly, and directing nuclear import of the viral DNA. Since MA has been reported to be a component of the preintegration complex (PIC), we have used NMR to probe its interaction with other PIC components. We show that MA interacts with DNA and this is likely sufficient to account for its association with the PIC

    Affective state influences retrieval-induced forgetting for integrated knowledge

    Get PDF
    Selectively testing parts of learned materials can impair later memory for nontested materials. Research has shown that such retrieval-induced forgetting occurs for low-integrated materials but may be prevented for high-integrated materials. However, previous research has neglected one factor that is ubiquitous in real-life testing: affective stat

    Impact of HbA1c Measurement on Hospital Readmission Rates: Analysis of 70,000 Clinical Database Patient Records

    Get PDF
    Management of hyperglycemia in hospitalized patients has a significant bearing on outcome, in terms of both morbidity and mortality. However, there are few national assessments of diabetes care during hospitalization which could serve as a baseline for change. This analysis of a large clinical database (74 million unique encounters corresponding to 17 million unique patients) was undertaken to provide such an assessment and to find future directions which might lead to improvements in patient safety. Almost 70,000 inpatient diabetes encounters were identified with sufficient detail for analysis. Multivariable logistic regression was used to fit the relationship between the measurement of HbA1c and early readmission while controlling for covariates such as demographics, severity and type of the disease, and type of admission. Results show that the measurement of HbA1c was performed infrequently (18.4%) in the inpatient setting. The statistical model suggests that the relationship between the probability of readmission and the HbA1c measurement depends on the primary diagnosis. The data suggest further that the greater attention to diabetes reflected in HbA1c determination may improve patient outcomes and lower cost of inpatient care

    A rigid disulfide-linked nitroxide side chain simplifies the quantitative analysis of PRE data

    Get PDF
    The measurement of 1H transverse paramagnetic relaxation enhancement (PRE) has been used in biomolecular systems to determine long-range distance restraints and to visualize sparsely-populated transient states. The intrinsic flexibility of most nitroxide and metalchelating paramagnetic spin-labels, however, complicates the quantitative interpretation of PREs due to delocalization of the paramagnetic center. Here, we present a novel, disulfide-linked nitroxide spin label, R1p, as an alternative to these flexible labels for PRE studies. When introduced at solvent-exposed α-helical positions in two model proteins, calmodulin (CaM) and T4 lysozyme (T4L), EPR measurements show that the R1p side chain exhibits dramatically reduced internal motion compared to the commonly used R1 spin label (generated by reacting cysteine with the spin labeling compound often referred to as MTSL). Further, only a single nitroxide position is necessary to account for the PREs arising from CaM S17R1p, while an ensemble comprising multiple conformations is necessary for those observed for CaM S17R1. Together, these observations suggest that the nitroxide adopts a single, fixed position when R1p is placed at solvent-exposed α-helical positions, greatly simplifying the interpretation of PRE data by removing the need to account for the intrinsic flexibility of the spin label

    Estimation of interdomain flexibility of N-terminus of factor H using residual dipolar couplings

    Get PDF
    Characterization of segmental flexibility is needed to understand the biological mechanisms of the very large category of functionally diverse proteins, exemplified by the regulators of complement activation, that consist of numerous compact modules or domains linked by short, potentially flexible, sequences of amino acid residues. The use of NMR-derived residual dipolar couplings (RDCs), in magnetically aligned media, to evaluate interdomain motion is established but only for two-domain proteins. We focused on the three N-terminal domains (called CCPs or SCRs) of the important complement regulator, human factor H (i.e. FH1-3). These domains cooperate to facilitate cleavage of the key complement activation-specific protein fragment, C3b, forming iC3b that no longer participates in the complement cascade. We refined a three-dimensional solution structure of recombinant FH1-3 based on nuclear Overhauser effects and RDCs. We then employed a rudimentary series of RDC datasets, collected in media containing magnetically aligned bicelles (disk-like particles formed from phospholipids) under three different conditions, to estimate interdomain motions. This circumvents a requirement of previous approaches for technically difficult collection of five independent RDC datasets. More than 80% of conformers of this predominantly extended three-domain molecule exhibit flexions of < 40 °. Such segmental flexibility (together with the local dynamics of the hypervariable loop within domain 3), could facilitate recognition of C3b via initial anchoring and eventual reorganization of modules to the conformation captured in the previously solved crystal structure of a C3b:FH1-4 complex

    \u3csup\u3e1\u3c/sup\u3eH, \u3csup\u3e15\u3c/sup\u3eN, \u3csup\u3e13\u3c/sup\u3eC, and \u3csup\u3e13\u3c/sup\u3eCO Assignments of Human Interleukin-4 Using Three-Dimensional Double- and Triple-Resonance Heteronuclear Magnetic Resonance Spectroscopy

    Get PDF
    The assignment of the 1H, 15N, 13CO, and 13C resonances of recombinant human interleukin-4 (IL-4), a protein of 133 residues and molecular mass of 15.4 kDa, is presented based on a series of 11 three-dimensional (3D) double- and triple resonance heteronuclear NMR experiments. These studies employ uniformly labeled 15N- and 15N/13C-labeled IL-4 with an isotope incorporation of \u3e95% for the protein expressed in yeast. Five independent sequential connectivity pathways via one-, two-, and three-bond heteronuclear J couplings are exploited to obtain unambiguous sequential assignments. Specifically, CO(i)-N(i+l),NH(i+l) correlations are observed in the HNCO experiment, the CαH(i),Cα(i)-N(i+l) correlations in the HCA(CO)N experiment, the Cα(i)-N(i+l),NH(i+ 1) correlations in the HNCA and HN(C0)CA experiments, the CαH(i)-N(i+ l),NH(i+l) correlations in the H(CA)NH and HN(CO)HB experiments, and the Cβ(i)-N(i+ l),NH(i+ 1) correlations in the HN(CO)HB experiments. The backbone intraresidue CαH(i)-15N(i)-NH(i) correlations are provided by the 15N-edited Hartmann-Hahn (HOHAHA) and H(CA)NH experiments, the CβH(i)-15N(i)-NH(i) correlations by the 15N-edited HOHAHA and HNHB experiments, the l3Cα(i)-l5N(i)-NH(i) correlations by the HNCA experiment, and the CαH(1)-13Cα(i)-13CO(i) correlations by the HCACO experiment. Aliphatic side-chain spin systems are assigned by 3D 1H-13C-13C-1H correlated (HCCH-COSY) and total correlated (HCCH-TOCSY) spectroscopy. Because of the high resolution afforded by these experiments, as well as the availability of multiple sequential connectivity pathways, ambiguities associated with the limited chemical shift dispersion associated with helical proteins are readily resolved. Further, in the majority of cases (88%), four or more sequential correlations are observed between successive residues. Consequently, the interpretation of these experiments readily lends itself to semiautomated analysis which significantly simplifies and speeds up the assignment process. The assignments presented in this paper provide the essential basis for studies aimed at determining the high-resolution three-dimensional structure of IL-4 in solution

    Solution structure and dynamic analysis of chicken MBD2 methyl binding domain bound to a target-methylated DNA sequence

    Get PDF
    The epigenetic code of DNA methylation is interpreted chiefly by methyl cytosine binding domain (MBD) proteins which in turn recruit multiprotein co-repressor complexes. We previously isolated one such complex, MBD2-NuRD, from primary erythroid cells and have shown it contributes to embryonic/fetal β-type globin gene silencing during development. This complex has been implicated in silencing tumor suppressor genes in a variety of human tumor cell types. Here we present structural details of chicken MBD2 bound to a methylated DNA sequence from the ρ-globin promoter to which it binds in vivo and mediates developmental transcriptional silencing in normal erythroid cells. While previous studies have failed to show sequence specificity for MBD2 outside of the symmetric mCpG, we find that this domain binds in a single orientation on the ρ-globin target DNA sequence. Further, we show that the orientation and affinity depends on guanine immediately following the mCpG dinucleotide. Dynamic analyses show that DNA binding stabilizes the central β-sheet, while the N- and C-terminal regions of the protein maintain mobility. Taken together, these data lead to a model in which DNA binding stabilizes the MBD2 structure and that binding orientation and affinity is influenced by the DNA sequence surrounding the central mCpG
    corecore