17 research outputs found
New insights into ion regulation of cephalopod molluscs: a role of epidermal ionocytes in acid-base regulation during embryogenesis
The constraints of an active life in a pelagic habitat led to numerous convergent morphological and physiological adaptations that enable cephalopod molluscs and teleost fishes to compete for similar resources. Here we show for the first time that such convergent developments are also found in the ontogenetic progression of ion regulatory tissues: as in teleost fish epidermal ionocytes scattered on skin and yolk sac of cephalopod embryos appear to be responsible for ionic and acid-base regulation before gill epithelia become functional. Ion and acid-base regulation is crucial in cephalopod embryos, as they are surrounded by a hypercapnic egg fluid with a pCO2 of 0.2-0.4 kPa. Epidermal ionocytes were characterized via immunohistochemistry, in situ hybridization and vital dye staining techniques. We found one group of cells that is recognized by Concavalin A and MitoTracker, which also expresses Na+/H+ exchangers (NHE) and Na+/K+-ATPase. Similar to findings obtained in teleosts these NHE3-rich cells take up sodium in exchange for protons, illustrating the energetic superiority of NHE based proton excretion in marine systems. In vivo electrophysiological techniques demonstrated that acid equivalents are secreted by the yolk and skin integument. Intriguingly, epidermal ionocytes of cephalopod embryos are ciliated as demonstrated by scanning electron microscopy suggesting a dual function of epithelial cells in water convection and ion regulation. These findings add significant knowledge to our mechanistic understanding of hypercapnia tolerance in marine organisms, as it demonstrates that marine taxa which were identified as powerful acid-base regulators during hypercapnic challenges already exhibit strong acid-base regulatory abilities during embryogenesis
Ontogeny of Osmoregulatory Structures in the Shrimp Penaeus japonicus (Crustacea, Decapoda)
Volume: 186Start Page: 29End Page: 4
Physiological and behavioural responses of Gammarus pulex exposed to acid stress
International audienc
Ontogeny of Osmoregulation and Salinity Tolerance in Two Decapod Crustaceans: Homarus americanus and Penaeus japonicus
Volume: 175Start Page: 102End Page: 11
Does sulphide detoxication occur in the gills of the hydrothermal vent shrimp, <i>Rimicaris exoculata</i>?
Ultrastructural observations of the gills of the hydrothermal vent shrimp Rimicaris exoculata reveal that the epithelial cells contain numerous mitochondria clustered around unusual organelles (diameter of 0.7 to 2.5 ”m) containing membrane stacks. These organelles were termed sulphide-oxidising bodies (SOBs) by structural analogy with organelles observed in the tissues of species adapted to sulphide-rich environments. Moreover, in the gills of R. exoculata, mitochondria display numerous electron-dense granules in their stroma. Such ultrastructural features suggest that sulphide detoxication may probably occur in the gills of R. exoculata. Comparable structures were also described in the gills of other hydrothermal vent species, as the alvinellid Pompeii worms that, as R. exoculata, are housing ectosymbiotic bacteria
A postlarval instar of Phoxichilidium femoratum
Abstract
Individuals of the marine chelicerate lineage Pycnogonida (sea spiders) show considerable regenerative capabilities after appendage injury or loss. In their natural habitats, especially the long legs of sea spiders are commonly lost and regenerated, as is evidenced by the frequent encounter of specimens with missing or miniature legs. In contrast to this, the collection of individuals with abnormally developed appendages or trunk regions is comparably rare. Here, we studied a remarkable malformation in a postlarval instar of the species Phoxichilidium femoratum (Rathke, 1799) and describe the external morphology and internal organization of the specimen using a combination of fluorescent histochemistry and scanning electron microscopy. The individual completely lacks the last trunk segment with leg pair 4 and the normally penultimate trunk segment bears only a single aberrant appendage resembling an extension of the anteroposterior body axis. Externally, the proximal units of the articulated appendage are unpaired, but further distally a bifurcation into two equally developed legâlike branches is found. Threeâdimensional reconstruction of the musculature reveals components of two regular leg muscle sets in several of the proximal articles. This confirms interpretation of the entire appendage as a malformed leg and reveals an externally hidden paired organization along its entire proximodistal axis. To explain the origin of this unique malformation, early pioneering studies on the regenerative potential of pycnogonids are evaluated and (a) an injuryâinduced partial fusion of the developing limb buds of leg pair 3, as well as (b) irregular leg regeneration following near complete loss of trunk segments 3 and 4 are discussed. Which of the two hypotheses is more realistic remains to be tested by dedicated experimental approaches. These will have to rely on pycnogonid species with established laboratory husbandry in order to overcome the limitations of the few shortâterm regeneration studies performed to date
Localization of ion-regulatory epithelia in embryos and hatchlings of two cephalopods
The tissue distribution and ontogeny of Na+/K+-ATPase has been examined as an indicator for ion-regulatory epithelia in whole animal sections of embryos and hatchlings of two cephalopod species: the squid Loligo vulgaris and the cuttlefish Sepia officinalis. This is the first report of the immunohistochemical localization of cephalopod Na+/K+-ATPase with the polyclonal antibody α (H-300) raised against the human α1-subunit of Na+/K+-ATPase. Na+/K+-ATPase immunoreactivity was observed in several tissues (gills, pancreatic appendages, nerves), exclusively located in baso-lateral membranes lining blood sinuses. Furthermore, large single cells in the gill of adult L. vulgaris specimens closely resembled Na+/K+-ATPase-rich cells described in fish. Immunohistochemical observations indicated that the amount and distribution of Na+/K+-ATPase in late cuttlefish embryos was similar to that found in juvenile and adult stages. The ion-regulatory epithelia (e.g., gills, excretory organs) of the squid embryos and paralarvae exhibited less differentiation than adults. Na+/K+-ATPase activities for whole animals were higher in hatchlings of S. officinalis (157.0â±â32.4 ”mol gFMâ1âhâ1) than in those of L. vulgaris (31.8â±â3.3 ”mol gFMâ1âhâ1). S. officinalis gills and pancreatic appendages achieved activities of 94.8â±â18.5 and 421.8â±â102.3 ”molATPâgFMâ1âhâ1, respectively. High concentrations of Na+/K+-ATPase in late cephalopod embryos might be important in coping with the challenging abiotic conditions (low pH, high pCO2) that these organisms encounter inside their eggs. Our results also suggest a higher sensitivity of squid vs. cuttlefish embryos to environmental acid-base disturbances