881 research outputs found
Modelling the contribution of short-range atmospheric and hydrological transfers to nitrogen fluxes, budgets and indirect emissions in rural landscapes
Spatial interactions within a landscape may lead to large inputs of reactive nitrogen (N<sub>r</sub>) transferred from cultivated areas and farms to oligotrophic ecosystems and induce environmental threats such as acidification, nitric pollution or eutrophication of protected areas. The paper presents a new methodology to estimate N<sub>r</sub> fluxes at the landscape scale by taking into account spatial interactions between landscape elements. This methodology includes estimates of indirect N<sub>r</sub> emissions due to short-range atmospheric and hydrological transfers. We used the NitroScape model which integrates processes of N<sub>r</sub> transformation and short-range transfer in a dynamic and spatially distributed way to simulate N<sub>r</sub> fluxes and budgets at the landscape scale. Four configurations of NitroScape were implemented by taking into account or not the atmospheric, hydrological or both pathways of N<sub>r</sub> transfer. We simulated N<sub>r</sub> fluxes, especially direct and indirect N<sub>r</sub> emissions, within a test landscape including pig farms, croplands and unmanaged ecosystems. Simulation results showed the ability of NitroScape to simulate patterns of N<sub>r</sub> emissions and recapture for each landscape element and the whole landscape. NitroScape made it possible to quantify the contribution of both atmospheric and hydrological transfers to N<sub>r</sub> fluxes, budgets and indirect N<sub>r</sub> emissions. For instance, indirect N<sub>2</sub>O emissions were estimated at around 21% of the total N<sub>2</sub>O emissions. They varied within the landscape according to land use, meteorological and soil conditions as well as topography. This first attempt proved that the NitroScape model is a useful tool to estimate the effect of spatial interactions on N<sub>r</sub> fluxes and budgets as well as indirect N<sub>r</sub> emissions within landscapes. Our approach needs to be further tested by applying NitroScape to several spatial arrangements of agro-ecosystems within the landscape and to real and larger landscapes
Sensitivity bond graphs
A sensitivity bond graph, of the same structure as the system bond graph, is shown to provide a simple and effective method of generating sensitivity functions of use in optimisation. The approach is illustrated in the context of partially known system parameter and state estimation
Magnetic variability in the young solar analog KIC 10644253: Observations from the Kepler satellite and the HERMES spectrograph
The continuous photometric observations collected by the Kepler satellite
over 4 years provide a whelm of data with an unequalled quantity and quality
for the study of stellar evolution of more than 200000 stars. Moreover, the
length of the dataset provide a unique source of information to detect magnetic
activity and associated temporal variability in the acoustic oscillations. In
this regards, the Kepler mission was awaited with great expectation. The search
for the signature of magnetic activity variability in solar-like pulsations
still remained unfruitful more than 2 years after the end of the nominal
mission. Here, however, we report the discovery of temporal variability in the
low-degree acoustic frequencies of the young (1 Gyr-old) solar analog KIC
10644253 with a modulation of about 1.5 years with significant temporal
variations along the duration of the Kepler observations. The variations are in
agreement with the derived photometric activity. The frequency shifts extracted
for KIC 10644253 are shown to result from the same physical mechanisms involved
in the inner sub-surface layers as in the Sun. In parallel, a detailed
spectroscopic analysis of KIC 10644253 is performed based on complementary
ground-based, high-resolution observations collected by the HERMES instrument
mounted on the MERCATOR telescope. Its lithium abundance and chromospheric
activity S-index confirm that KIC 10644253 is a young and more active star than
the Sun.Comment: Accepted for publication in A&A, 12 pages, 8 figure
SURFATM-NH3: a model combining the surface energy balance and bi-directional exchanges of ammonia applied at the field scale
A new biophysical model SURFATM-NH3, simulating the ammonia (NH<sub>3</sub>) exchange between terrestrial ecosystems and the atmosphere is presented. SURFATM-NH3 consists of two coupled models: (i) an energy budget model and (ii) a pollutant exchange model, which distinguish the soil and plant exchange processes. The model describes the exchanges in terms of adsorption to leaf cuticles and bi-directional transport through leaf stomata and soil. The results of the model are compared with the flux measurements over grassland during the GRAMINAE Integrated Experiment at Braunschweig, Germany. The dataset of GRAMINAE allows the model to be tested in various meteorological and agronomic conditions: prior to cutting, after cutting and then after the application of mineral fertilizer. The whole comparison shows close agreement between model and measurements for energy budget and ammonia fluxes. The major controls on the ground and plant emission potential are the physicochemical parameters for liquid-gas exchanges which are integrated in the compensation points for live leaves, litter and the soil surface. Modelled fluxes are highly sensitive to soil and plant surface temperatures, highlighting the importance of accurate estimates of these terms. The model suggests that the net flux depends not only on the foliar (stomatal) compensation point but also that of leaf litter. SURFATM-NH3 represents a comprehensive approach to studying pollutant exchanges and its link with plant and soil functioning. It also provides a simplified generalised approach (SVAT model) applicable for atmospheric transport models
Construction and analysis of causally dynamic hybrid bond graphs
Engineering systems are frequently abstracted to models with discontinuous behaviour (such as a switch or contact),
and a hybrid model is one which contains continuous and discontinuous behaviours. Bond graphs are an established
physical modelling method, but there are several methods for constructing switched or ‘hybrid’ bond graphs, developed
for either qualitative ‘structural’ analysis or efficient numerical simulation of engineering systems. This article proposes a
general hybrid bond graph suitable for both. The controlled junction is adopted as an intuitive way of modelling a discontinuity in the model structure. This element gives rise to ‘dynamic causality’ that is facilitated by a new bond graph notation. From this model, the junction structure and state equations are derived and compared to those obtained by
existing methods. The proposed model includes all possible modes of operation and can be represented by a single set
of equations. The controlled junctions manifest as Boolean variables in the matrices of coefficients. The method is more
compact and intuitive than existing methods and dispenses with the need to derive various modes of operation from a
given reference representation. Hence, a method has been developed, which can reach common usage and form a platform for further study
Host Galaxies of Type Ia Supernovae from the Nearby Supernova Factory
We present photometric and spectroscopic observations of galaxies hosting
Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory
(SNfactory). Combining GALEX UV data with optical and near infrared photometry,
we employ stellar population synthesis techniques to measure SN Ia host galaxy
stellar masses, star-formation rates (SFRs), and reddening due to dust. We
reinforce the key role of GALEX UV data in deriving accurate estimates of
galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are
fitted simultaneously for their stellar continua and emission lines fluxes,
from which we derive high precision redshifts, gas-phase metallicities, and
Halpha-based SFRs. With these data we show that SN Ia host galaxies present
tight agreement with the fiducial galaxy mass-metallicity relation from SDSS
for stellar masses log(M_*/M_Sun)>8.5 where the relation is well-defined. The
star-formation activity of SN Ia host galaxies is consistent with a sample of
comparable SDSS field galaxies, though this comparison is limited by systematic
uncertainties in SFR measurements. Our analysis indicates that SN Ia host
galaxies are, on average, typical representatives of normal field galaxies.Comment: 25 pages, 13 figures, accepted for publication in Ap
Measuring cosmic bulk flows with Type Ia Supernovae from the Nearby Supernova Factory
Context. Our Local Group of galaxies appears to be moving relative to the
cosmic microwave background with the source of the peculiar motion still
uncertain. While in the past this has been studied mostly using galaxies as
distance indicators, the weight of type Ia supernovae (SNe Ia) has increased
recently with the continuously improving statistics of available low-redshift
supernovae.
Aims. We measured the bulk flow in the nearby universe ()
using 117 SNe Ia observed by the Nearby Supernova Factory, as well as the
Union2 compilation of SN Ia data already in the literature.
Methods. The bulk flow velocity was determined from SN data binned in
redshift shells by including a coherent motion (dipole) in a cosmological fit.
Additionally, a method of spatially smoothing the Hubble residuals was used to
verify the results of the dipole fit. To constrain the location and mass of a
potential mass concentration (e.g., the Shapley supercluster) responsible for
the peculiar motion, we fit a Hubble law modified by adding an additional mass
concentration.
Results. The analysis shows a bulk flow that is consistent with the direction
of the CMB dipole up to , thereby doubling the volume over which
conventional distance measures are sensitive to a bulk flow. We see no
significant turnover behind the center of the Shapley supercluster. A simple
attractor model in the proximity of the Shapley supercluster is only marginally
consistent with our data, suggesting the need for another, more distant source.
In the redshift shell , we constrain the bulk flow velocity to
(68% confidence level) for the direction of the CMB
dipole, in contradiction to recent claims of the existence of a large-amplitude
dark flow.Comment: 12 pages, 5 figures, added corrigendum
(http://adsabs.harvard.edu/abs/2015A%26A...578C...1F
Type Ia Supernova Hubble Residuals and Host-Galaxy Properties
Kim et al. (2013) [K13] introduced a new methodology for determining
peak-brightness absolute magnitudes of type Ia supernovae from multi-band light
curves. We examine the relation between their parameterization of light curves
and Hubble residuals, based on photometry synthesized from the Nearby Supernova
Factory spectrophotometric time series, with global host-galaxy properties. The
K13 Hubble residual step with host mass is mag for a supernova
subsample with data coverage corresponding to the K13 training; at , the step is not significant and lower than previous measurements.
Relaxing the data coverage requirement the Hubble residual step with host mass
is mag for the larger sample; a calculation using the modes of
the distributions, less sensitive to outliers, yields a step of 0.019 mag. The
analysis of this article uses K13 inferred luminosities, as distinguished from
previous works that use magnitude corrections as a function of SALT2 color and
stretch parameters: Steps at significance are found in SALT2 Hubble
residuals in samples split by the values of their K13 and
light-curve parameters. affects the light-curve width and color around
peak (similar to the and stretch parameters), and
affects colors, the near-UV light-curve width, and the light-curve decline 20
to 30 days after peak brightness. The novel light-curve analysis, increased
parameter set, and magnitude corrections of K13 may be capturing features of
SN~Ia diversity arising from progenitor stellar evolution.Comment: 17 pages, 6 figures. Accepted by Astrophysical Journa
- …
