153 research outputs found
Telemac3D for aquatic ecological modelling: calibration of the coupled ecological library AED2
HydrodynamicsAbstrac
Cortical bone architecture of hominid intermediate phalanges reveals functional signals of locomotion and manipulation
DATA AVAILABILITY STATEMENT :
Copies of all scans are curated by the relevant curatorial institutions that are responsible for the original specimens and access can be requested through each institution. The authors confirm that the data supporting the findings of this study are available from the corresponding author upon reasonable request.OBJECTIVES :
Reconstruction of fossil hominin manual behaviors often relies on comparative analyses of extant hominid hands to understand the relationship between hand use and skeletal morphology. In this context, the intermediate phalanges remain understudied. Thus, here we investigate cortical bone morphology of the intermediate phalanges of extant hominids and compare it to the cortical structure of the proximal phalanges, to investigate the relationship between cortical bone structure and inferred loading during manual behaviors.
MATERIALS AND METHODS :
Using micro-CT data, we analyze cortical bone structure of the intermediate phalangeal shaft of digits 2–5 in Pongo pygmaeus (n = 6 individuals), Gorilla gorilla (n = 22), Pan spp. (n = 23), and Homo sapiens (n = 23). The R package morphomap is used to study cortical bone distribution, cortical thickness and cross-sectional properties within and across taxa.
RESULTS :
Non-human great apes generally have thick cortical bone on the palmar shaft, with Pongo only having thick cortex on the peaks of the flexor sheath ridges, while African apes have thick cortex along the entire flexor sheath ridge and proximal to the trochlea. Humans are distinct in having thicker dorsal shaft cortex as well as thick cortex at the disto-palmar region of the shaft.
DISCUSSION :
Variation in cortical bone distribution and properties of the intermediate phalanges is consistent with differences in locomotor and manipulative behaviors in extant great apes. Comparisons between the intermediate and proximal phalanges reveals similar patterns of cortical bone distribution within each taxon but with potentially greater load experienced by the proximal phalanges, even in knuckle-walking African apes. This study provides a comparative context for the reconstruction of habitual hand use in fossil hominins and hominids.H2020 European Research Council;
HORIZON EUROPE Marie Sklodowska-Curie Actions.http://wileyonlinelibrary.com/journal/ajpahj2024AnatomySDG-03:Good heatlh and well-bein
Missense mutation of a class B heat shock factor is responsible for the tomato bushy root-2 phenotype
The bushy root-2 (brt-2) tomato mutant has twisting roots, and slower plant development. Here we used whole genome resequencing and genetic mapping to show that brt-2 is caused by a serine to cysteine (S75C) substitution in the DNA binding domain (DBD) of a heat shock factor class B (HsfB) encoded by SolycHsfB4a. This gene is orthologous to the Arabidopsis SCHIZORIZA gene, also known as AtHsfB4. The brt-2 phenotype is very similar to Arabidopsis lines in which the function of AtHsfB4 is altered: a proliferation of lateral root cap and root meristematic tissues, and a tendency for lateral root cap cells to easily separate. The brt-2 S75C mutation is unusual because all other reported amino acid substitutions in the highly conserved DBD of eukaryotic heat shock factors are dominant negative mutations, but brt-2 is recessive. We further show through reciprocal grafting that brt-2 exerts its effects predominantly through the root genotype even through BRT-2 is expressed at similar levels in both root and shoot meristems. Since AtHsfB4 is induced by root knot nematodes (RKN), and loss-of-function mutants of this gene are resistant to RKNs, BRT-2 could be a target gene for RKN resistance, an important trait in tomato rootstock breeding.Biotechnology and Biological Sciences Research Council (BBSRC): BB/L01954X/
Measurement, modelling, and closed-loop control of crystal shape distribution: Literature review and future perspectives
Crystal morphology is known to be of great importance to the end-use properties of crystal products, and to affect down-stream processing such as filtration and drying. However, it has been previously regarded as too challenging to achieve automatic closed-loop control. Previous work has focused on controlling the crystal size distribution, where the size of a crystal is often defined as the diameter of a sphere that has the same volume as the crystal. This paper reviews the new advances in morphological population balance models for modelling and simulating the crystal shape distribution (CShD), measuring and estimating crystal facet growth kinetics, and two- and three-dimensional imaging for on-line characterisation of the crystal morphology and CShD. A framework is presented that integrates the various components to achieve the ultimate objective of model-based closed-loop control of the CShD. The knowledge gaps and challenges that require further research are also identified
Fertilization Strategies Based on Climate Information to Enhance Food Security Through Improved Dryland Cereals Production
Rainfall uncertainty and nutrient deficiency affect sorghum production in Sahel. This study aimed at (i) determining the responses (varieties*water*nitrogen) of various West-African sorghum (Sorghum bicolor L. Moench) varieties to the application of fertilizer (NPK and urea) at selected growing stages according to water regime (irrigated or not, different rainfall patterns) and (ii) simulating them to define alternative fertilization strategies. This chapter proposes alternative fertilization strategies in line with rainfall patterns. Split plot experiments with four replications were carried out in two locations (Senegal), with four improved sorghum varieties (Fadda, IS15401, Soumba and 621B). Treatments were T1, no fertilizer; T2 = 150 kg/ha of NPK (15-15-15) at emergence +50 kg/ha of urea (46%) at tillering +50 Kg/ha of urea at stem extension; T3 = half rate of T2 applied at the same stages; T4 = 150 kg/ha of NPK + 50 kg/ha of urea at stem extension +50 kg/ha of urea at heading, and T5 = half rate of T4 applied at the same stages. Plant height, leaf number, grain yield, and biomass were significantly affected by the timing and rate of fertilizers. Grain yield were affected by water*nitrogen and nitrogen*variety interactions. It varied from 2111 to 261 kg/ha at “Nioro du Rip” and from 1670 to 267 kg/ha at “Sinthiou Malème”. CERES-Sorghum model overestimated late fertilizer grain yields. To achieve acceptable grain yield, fertilizers application should be managed regarding weather
O efeito de borda influencia a estrutura da comunidade vegetal em uma floresta tropical seca?
Efeitos de borda são considerados fator-chave na regulação da estrutura de comunidades vegetais em diferentes ecossistemas. Entretanto, apesar dos poucos estudos relacionados, o efeito de borda parece não ser determinante em regiões semiáridas, como a floresta tropical seca brasileira, conhecida como Caatinga. Este estudo testou a hipótese nula de que a comunidade vegetal arbustivo-arbórea não sofre alterações em sua estrutura, riqueza e composição devido ao efeito de borda. Foram instaladas 24 parcelas (20 x 20 m) em um fragmento de Caatinga arbórea, sendo 12 parcelas na borda do fragmento e 12 parcelas no seu interior. A riqueza, abundância e composição das espécies não diferiram estatisticamente entre as parcelas de borda e interior. Os resultados deste estudo corroboram um possível padrão de ambientes semiáridos e contrastam com resultados anteriores de diferentes ambientes, como florestas tropicais úmidas, cerrado e floresta de araucária. Indicam diferenças abruptas entre comunidades vegetais da borda e do interior de fragmentos florestais, sugerindo que a comunidade arbustivo-arbórea da Caatinga não é ecologicamente afetada pela presença de bordas._________________________________________________________________________________________ ABSTRACT: Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m) were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges
- …